留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微藻与塑料混合热解制备低氮低氧富烃液体油

唐紫玥 陈伟 胡俊豪 杨海平 陈应泉 陈汉平

唐紫玥, 陈伟, 胡俊豪, 杨海平, 陈应泉, 陈汉平. 微藻与塑料混合热解制备低氮低氧富烃液体油[J]. 燃料化学学报(中英文), 2021, 49(12): 1860-1866. doi: 10.19906/j.cnki.JFCT.2021070
引用本文: 唐紫玥, 陈伟, 胡俊豪, 杨海平, 陈应泉, 陈汉平. 微藻与塑料混合热解制备低氮低氧富烃液体油[J]. 燃料化学学报(中英文), 2021, 49(12): 1860-1866. doi: 10.19906/j.cnki.JFCT.2021070
TANG Zi-yue, CHEN Wei, HU Jun-hao, YANG Hai-ping, CHEN Ying-quan, CHEN Han-ping. Microalgae co-pyrolysis with waste plastics to prepare low-O/N and hydrocarbon-rich liquid oil[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1860-1866. doi: 10.19906/j.cnki.JFCT.2021070
Citation: TANG Zi-yue, CHEN Wei, HU Jun-hao, YANG Hai-ping, CHEN Ying-quan, CHEN Han-ping. Microalgae co-pyrolysis with waste plastics to prepare low-O/N and hydrocarbon-rich liquid oil[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1860-1866. doi: 10.19906/j.cnki.JFCT.2021070

微藻与塑料混合热解制备低氮低氧富烃液体油

doi: 10.19906/j.cnki.JFCT.2021070
基金项目: 国家自然科学基金(51906082,51861130362)和中国博士后科学基金(2019M662617)资助
详细信息
    通讯作者:

    Tel: 027-87542417-8211,E-mail: yhping2002@163.com

  • 中图分类号: TK6

Microalgae co-pyrolysis with waste plastics to prepare low-O/N and hydrocarbon-rich liquid oil

Funds: The project was supported by the National Natural Science Foundation of China (51906082, 51861130362) and the China Postdoctoral Science Foundation (2019M662617)
  • 摘要: 为了减少油中氮氧化合物,提高微藻生物油品质,本研究在固定床上开展了微拟球藻(NS)和聚乙烯塑料(LDPE)的混合热解/催化特性,探讨了O和N在热解气、液、固相的分布,并以此探讨了微藻与LDPE之间的交互作用以及催化剂的加入对混合热解的影响。研究发现,混合热解能有效抑制O和N向油中转移,促进微藻中O转变为H2O,N向气体产物转移。此外塑料添加明显减少了油中羧酸、酰胺和含氮杂环等含氧/氮化合物,提高了脂肪烃含量,同时有效促进碳氢气体的形成,并对CO和H2也有一定的协同作用,特别是在25%LDPE时协同效应最强。同时ZSM-5能促进碳氢气体形成,提高气体产物的热值(35.6 MJ/m3),并进一步减少油中含氮化合物,促进N向气体转移,O向气体和H2O中转移,从而使油中O、N含量明显降低;此外混合催化热解能在一定程度上抑制芳烃的形成,提高脂肪烃选择性。
  • FIG. 1151.  FIG. 1151.

    FIG. 1151.  FIG. 1151.

    图  1  微藻与塑料混合热解反应系统示意图

    Figure  1  Schematic diagram of the co-pyrolysis process of microalgae and plastics

    图  2  微藻与塑料在600 ℃下混合热解的产物分布(a)和O/N分布(b)

    Figure  2  Products distribution (a) and O/N distribution in products (b) of co-pyrolysis of microalgae and plastics at 600 ℃

    图  3  微藻和塑料混合热解气体释放特性

    Figure  3  Properties of the gas compositions from co-pyrolysis of microalgae and plastic

    图  4  微藻和塑料混合热解的液体油组分分布

    Figure  4  Compositions of oil from co-pyrolysis of microalgae and plastic

    图  5  微藻原料和微藻与塑料混合热解焦炭的FT-IR谱图

    Figure  5  FT-IR spectra of raw microalgae and chars from microalgae co-pyrolysis with plastic

    图  6  塑料添加量为25%时,微藻和塑料在600 ℃催化混合热解的产物分布(a)和O、N分布特性(b)

    Figure  6  Products distribution (a) and the distribution of O and N (b) from microalgae catalytic co-pyrolysis with plastic at 600 ℃ when 25%LDPE added

    图  7  塑料添加量为25%时,微藻和塑料催化热解的气体释放特性(a)和液体油组分(b)

    Figure  7  Properties of gas releasing(a) and the compositions of liquid oil (b) from catalytic co-pyrolysis of microalgae and LDPE at 600 ℃ when 25%LDPE added

    表  1  样品的工业分析、元素分析和微藻的生化组成

    Table  1  Proximate, ultimate analysis of samples and biochemical constituents of microalgae

    SampleUltimate analysis wad/%Proximate analysis wad/%Biochemical constituents wad/%
    CHNSO*MVFCAlipidproteincarbohydrate*
    NS50.617.316.680.6424.84.0179.6110.3863040.819.2
    LDPE84.3215.470.21100   
    * : by difference; –: not detected
    下载: 导出CSV
  • [1] 唐晓莲. 秸秆转化成生物质燃料的应用技术研究[J]. 能源化工,2021,42(2):14−17. doi: 10.3969/j.issn.1006-7906.2021.02.004

    TANG Xiao-lian. Study on appliciation of straw conversion to biomass fuel[J]. Energy Chem Ind,2021,42(2):14−17. doi: 10.3969/j.issn.1006-7906.2021.02.004
    [2] ROSS, A B, BILLER P, KUBACKI M L, LI H, LEA–LANGTON A, JONES J M. Hydrothermal processing of microalgae using alkali and organic acids[J]. Fuel,2010,89(9):2234−2243. doi: 10.1016/j.fuel.2010.01.025
    [3] LI F H, SRIKANTH C S, SANKAR B. A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds[J]. Renewable Sustainable Energy Rev,2019,108:481−497. doi: 10.1016/j.rser.2019.03.026
    [4] BACH Q V, CHEN W H, Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review[J]. Bioresour Technol, 2017, 246: 88–100.
    [5] AYSU T M, MAROTO-VALER M M, SANNA A. Ceria promoted deoxygenation and denitrogenation of Thalassiosira weissflogii and its model compounds by catalytic in-situ pyrolysis[J]. Bioresour Technol,2016,208:140−148. doi: 10.1016/j.biortech.2016.02.050
    [6] AZIZI K, MOSTAFA K M, HAMED A N. A review on bio-fuel production from microalgal biomass by using pyrolysis method[J]. Renewable Sustainable Energy Rev,2018,82:3046−3059. doi: 10.1016/j.rser.2017.10.033
    [7] CAMPANELLA A, MICHAEL P H. Fast pyrolysis of microalgae in a falling solids reactor: Effects of process variables and zeolite catalysts[J]. Biomass Bioenergy,2012,46:218−232. doi: 10.1016/j.biombioe.2012.08.023
    [8] SUNG W K, BON S K, DONG H L. A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed[J]. Bioresour Technol,2014,162:96−102. doi: 10.1016/j.biortech.2014.03.136
    [9] 毛俏婷, 胡俊豪, 赵雨佳, 闫舒航, 杨海平, 陈汉平, 生物质和废塑料混合热解协同特性研究[J]. 燃料化学学报, 2020, 48(3): 286–292.

    MAO Qiao-ting, HU Jun-hao, ZHAO Yu-jia, YAN Shu-hang, YANG Hai-ping, CHEN Han-ping. Synergistic effect during biomass and waste plastics co-pyrolysis[J]. J Fuel Chem Technol, 2020, 48(3): 286–292.
    [10] RANJEET K M, KAUSTUBHA M. Co-pyrolysis of waste biomass and waste plastics (polystyrene and waste nitrile gloves) into renewable fuel and value-added chemicals[J]. Carbon Resour Convers,2020,3:145−155. doi: 10.1016/j.crcon.2020.11.001
    [11] GHORBANNEZHAD P, SUNKYU P, JUDE A O. Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products[J]. Waste Manage,2020,102:909−918. doi: 10.1016/j.wasman.2019.12.006
    [12] EYLEM O, BASAK B U, AYSE E P. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene[J]. Energy Conv Manag,2014,78:704−710. doi: 10.1016/j.enconman.2013.11.022
    [13] WANG Y Z, LI Y J, ZHANG C X, YANG L G, FAN X X, CHU L Z. A study on co-pyrolysis mechanisms of biomass and polyethylene via ReaxFF molecular dynamic simulation and density functional theory[J]. Process Saf Environ Protect,2021,150:22−35. doi: 10.1016/j.psep.2021.04.002
    [14] CHEN R J, ZHANG S Y, YANG X X, LI G H, ZHOU H, LI Q H, ZHANG Y G. Thermal behaviour and kinetic study of co-pyrolysis of microalgae with different plastics[J]. Waste Manag,2021,126:331−339. doi: 10.1016/j.wasman.2021.03.001
    [15] PAN P, HU C W, YANG W Y, LI Y S, DONG L L, ZHU L F, TONG D M, QING R W, FAN Y. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils[J]. Bioresour Technol,2010,101(12):4593−4599. doi: 10.1016/j.biortech.2010.01.070
    [16] DU Z Y, HU B, MA X C, CHENG Y L, LIU Y H, LIN X Y, WAN Y Q, LEI H W, CHEN P, ROGER R. Catalytic pyrolysis of microalgae and their three major components: Carbohydrates, proteins, and lipids[J]. Bioresour Technol,2013,130:777−782. doi: 10.1016/j.biortech.2012.12.115
    [17] RAHMAN M H, PRAKASHBHAI R B, ARPITA S, VIVEK P, SUSHIL A. Thermo-catalytic co-pyrolysis of biomass and high-density polyethylene for improving the yield and quality of pyrolysis liquid[J]. Energy,2021,225:120231.
    [18] XU S N, CAO B, UZOEJINWA B B, ODEY E A, WANG S, SHANG H, LI C H, HU Y M, WANG Q, NWAKAIRE J N. Synergistic effects of catalytic co-pyrolysis of macroalgae with waste plastics[J]. Process Saf Environ Protect,2020,137:34−48. doi: 10.1016/j.psep.2020.02.001
    [19] QI P Y, CHANG G Z, WANG H C, ZHANG X L, GUO Q J. Production of aromatic hydrocarbons by catalytic co–pyrolysis of microalgae and polypropylene using HZSM-5[J]. J Anal Appl Pyrolysis,2018,136:178−185. doi: 10.1016/j.jaap.2018.10.007
    [20] AUGUSTINA E, DOAN P M, DAMIEN L, CARLOS P, PATRICK S, ANGE N. Co–pyrolysis of wood and plastics: Influence of plastic type and content on product yield, gas composition and quality[J]. Fuel,2018,231:110−117. doi: 10.1016/j.fuel.2018.04.140
    [21] XU X W, TU R, SUN Y, LI Z Y, JIANG E. Influence of biomass pretreatment on upgrading of bio-oil: Comparison of dry and hydrothermal torrefaction[J]. Bioresour Technol,2018,262:261−270. doi: 10.1016/j.biortech.2018.04.037
    [22] TANG Z Y, CHEN W, HU J H, LI S Q, CHEN Y Q, YANG H P, CHEN H P. Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification[J]. Bioresour Technol,2020,311:123502. doi: 10.1016/j.biortech.2020.123502
    [23] CHEN W, CHEN Y Q, YANG H P, XIA M W, LI K X, CHEN X, CHEN H P. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect[J]. Bioresour Technol,2017,245:860−868. doi: 10.1016/j.biortech.2017.09.022
    [24] LI J, LIU Y W, SHI J Y, WANG Z Y, HU L, YANG X, WANG C X. The investigation of thermal decomposition pathways of phenylalanine and tyrosine by TG-FTIR[J]. Thermochimica Acta,2008,467(1):20−29.
    [25] DEBIAGI P E A, TRINCHERA M, FRASSOLDATI A, FARAVELLI T, RAVIKRISHNAN V, ELISEO R. Algae characterization and multistep pyrolysis mechanism[J]. J Anal Appl Pyrolysis,2017,128:423−436. doi: 10.1016/j.jaap.2017.08.007
    [26] WANG J J, MA X Q, YU Z S, PENG X W, LIN Y S. Studies on thermal decomposition behaviors of demineralized low-lipid microalgae by TG-FTIR[J]. Thermochim Acta,2018,660:101−109. doi: 10.1016/j.tca.2018.01.001
    [27] CHEN W, CHEN Y Q, YANG H P, LI K X, CHEN X, CHEN H P. Investigation on biomass nitrogen-enriched pyrolysis: Influence of temperature[J]. Bioresour Technol, 2018, 249(Supplement C): 247–253.
    [28] WANG K G, ROBERT C B. Catalytic pyrolysis of microalgae for production of aromatics and ammonia[J]. Green Chem,2013,15(3):675. doi: 10.1039/c3gc00031a
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  141
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-27
  • 修回日期:  2021-07-05
  • 网络出版日期:  2021-08-10
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回