Selective catalytic reduction of nitric oxide with propylene over one-step synthesized Cu-SAPO-44 catalysts
-
摘要: 以环己胺(CHA)和铜胺络合物(Cu-TEPA)为共模板剂,一步水热合成Cu-SAPO-44分子筛催化剂,用于贫燃条件下选择性催化丙烯还原NO(C3H6-SCR)。采用N2吸附-脱附、X射线衍射(XRD)、透射电子显微镜(TEM)、紫外可见光谱(UV-vis)、NH3程序升温脱附(NH3-TPD)和H2程序升温还原(H2-TPR)等方法对催化剂进行表征。与纯SAPO-44相比,Cu-TEPA的引入显著增强了分子筛的C3H6-SCR催化活性。当Cu/Al=0.25时,Cu-SAPO-44催化剂有着最大的比表面积、丰富的酸性位和较多的孤立Cu2+物种,具有最佳的脱硝性能。随着Cu-TEPA引入量的增加,铜物种会在分子筛表面聚集,生成相对较多无活性的CuO,从而降低了脱硝活性。原位红外光谱(In situ DRIFTS)研究表明,孤立的Cu2+有助于NO和 C3H6的吸附和活化,促进反应关键中间产物−NCO形成。50 h的持久性反应测试表明,Cu-SAPO-44催化剂始终保持>60%的NOx转化率和>90%的N2选择性,表现出良好的反应稳定性。
-
关键词:
- Cu-SAPO-44 /
- 选择性催化还原 /
- NO /
- C3H6-SCR
Abstract: Cu-SAPO-44 zeolite catalysts were synthesized by one-step hydrothermal method using cyclohexylamine (CHA) and Cu-amine complex (Cu-TEPA) as co-template. They were used for selective catalytic reduction of nitric oxide with propylene (C3H6-SCR) under lean burning condition. These catalysts were characterized by N2 adsorption-desorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis spectroscopy (UV-vis), NH3 temperature-programmed desorption (NH3-TPD) and H2 temperature-programmed reduction (H2-TPR). Compared with pure SAPO-44, the introduction of Cu-TEPA significantly enhanced the catalytic activity of C3H6-SCR. When Cu/Al was 0.25, Cu-SAPO-44 catalyst had the largest specific surface area, abundant acidic sites and moderate isolated Cu2+ species, thus it had the best deNOx performance. With the increase of Cu-TEPA introduction, copper species would aggregate on the surface of the zeolite and form more inactive CuO, thus reducing the denitrification activity. In situ study by DRIFTS indicated that isolated Cu2+ could contribute to the adsorption and activation of NO and C3H6, thus enhancing in the formation of −NCO, which was a key intermediate of the reaction. The Cu-SAPO-44 catalyst maintained more than 60% NOx conversion and more than 90% N2 selectivity in long term test of 50 h, showing appropriate reaction stability.-
Key words:
- Cu-SAPO-44 /
- selective catalytic reduction /
- NO /
- C3H6-SCR
-
表 1 实验过程中使用的试剂
Table 1 Reagents are used during the experiment
Reagent Purity Manufacturer Al2O3 >70% Shandong Guanghui New Material Company CuSO4·5H2O AR, >99% Sinopharm Chemical Reagent Co. LTD H3PO4 AR, >85% Sinopharm Chemical Reagent Co. LTD SiO2 >40% Aldrich H2O AR Lab-produced TEPA CP, >90% Sinopharm Chemical Reagent Co. LTD CHA CP, >90% Sinopharm Chemical Reagent Co. LTD NO 0.50%NO + 99.5%N2 Changzhou Wujin Huayang gas C3H6 5.01%C3H6 + 94.99%N2 Changzhou Wujin Huayang gas O2 ≥99.999% Changzhou Wujin Huayang gas N2 ≥99.999% Changzhou Wujin Huayang gas 表 2 Cu-SAPO-44系列催化剂各种元素的成分
Table 2 Content of each component of series Cu-SAPO-44 catalysts
Sample Element content w/% Cu Al P Si Cu0.05-SAPO-44 1.149 16.425 16.403 5.617 Cu0.15-SAPO-44 3.351 16.317 15.529 5.699 Cu0.25-SAPO-44 5.016 15.021 13.463 6.654 Cu0.35-SAPO-44 6.592 14.925 13.746 6.579 Cu0.45-SAPO-44 7.975 14.502 13.134 6.380 表 3 Cu-SAPO-44系列催化剂的孔隙结构
Table 3 Texture properties of series Cu-SAPO-34 catalysts
Sample SBET / (m2·g−1) Pore volume / (cm3·g−1) Pore size / nm Cu0.05-SAPO-44 394 0.146 1.853 Cu0.15-SAPO-44 429 0.158 1.789 Cu0.25-SAPO-44 488 0.182 1.498 Cu0.35-SAPO-44 452 0.166 1.650 Cu0.45-SAPO-44 443 0.165 1.689 -
[1] CAPEK L, NOVOVESKA K, SOBALIK Z, WICHTERLOVA B, CIDER L, JOBSON E. Cu-ZSM-5 zeolite highly active in reduction of NO with decane under water vapor presence - Comparison of decane, propane and propene by in situ FTIR[J]. Appl Catal B: Environ,2005,60(3/4):201−210. doi: 10.1016/j.apcatb.2005.02.033 [2] KOMVOKIS V G, ILIOPOULOU E F, VASALOS I A, TRIANTAFYLLIDIS K S, MARSHALL C L. Development of optimized Cu-ZSM-5 deNOx catalytic materials both for HC-SCR applications and as FCC catalytic additives[J]. Appl Catal A: Gen,2007,325(2):345−352. doi: 10.1016/j.apcata.2007.02.035 [3] HE H, ZHANG X, WU Q, ZHANG C, YU Y. Review of Ag/Al2O3-Reductant system in the selective catalytic reduction of NOx[J]. Catal Sur Asia,,2008,12(1):38−55. doi: 10.1007/s10563-007-9038-9 [4] ČAPEK L, DĚDEČEK J, WICHTERLOVÁ B, CIDER L, JOBSON E, TOKAROVÁ V. Cu-ZSM-5 zeolite highly active in reduction of NO with decane: Effect of zeolite structural parameters on the catalyst performance[J]. Appl Catal B: Environ,2005,60(3/4):147−153. doi: 10.1016/j.apcatb.2005.02.026 [5] DĚDEČEK J, BORTNOVSKY O, VONDROVÁ A, WICHTERLOVÁ B. Catalytic activity of Cu-Beta zeolite in NO decomposition: Effect of copper and aluminium distribution[J]. J Catal,2001,200(1):160−170. doi: 10.1006/jcat.2001.3195 [6] WANG A Y, ARORA P, BERNIN D, KUMAR A, KAMASAMUDRAM K, OLSSON L. Investigation of the robust hydrothermal stability of Cu/LTA for NH3-SCR reaction[J]. Appl Catal B: Environ,2019,246:242−253. doi: 10.1016/j.apcatb.2019.01.039 [7] KWAK J H, TONKYN R G, KIM D H, SZANYI J, PEDEN C H F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. J Catal,2010,275(2):187−190. doi: 10.1016/j.jcat.2010.07.031 [8] GAO F, WALTER E D, KARP E M, LUO J, TONKYN R G, KWAK J H, SZANYI J, PEDEN C H F. Structure-activity relationships in over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. J Catal,2013,300:20−29. doi: 10.1016/j.jcat.2012.12.020 [9] GAO F, WALTER E D, WASHTON N M, SZANYI J, PEDEN C H F. Synthesis and evaluation of Cu/SAPO-34 catalysts for NH3-SCR 2: Solid-state ion exchange and one-pot synthesis[J]. Appl Catal B: Environ,2015,162:501−514. doi: 10.1016/j.apcatb.2014.07.029 [10] WANG J, FAN D, YU T, WANG J, HAO T, HU X, SHEN M, LI W. Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2 + species[J]. J Catal,2015,322:84−90. doi: 10.1016/j.jcat.2014.11.010 [11] WANG A, WANG Y, WALTER E D, WASHTON N M, GUO Y, LU G, PEDEN C H F, GAO F. NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects[J]. Catal Today,2019,320:91−99. doi: 10.1016/j.cattod.2017.09.061 [12] MA L, CHENG Y, CAVATAIO G, MCCABE R W, FU L, LI J. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust[J]. Chem Eng J,2013,225:323−330. doi: 10.1016/j.cej.2013.03.078 [13] XIE L, LIU F, SHI X, XIAO F S, HE H. Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ,2015,179:206−212. doi: 10.1016/j.apcatb.2015.05.032 [14] REN L, ZHU L, YANG C, CHEN Y, SUN Q, ZHANG H, LI C, NAWAZ F, MENG X, XIAO F S. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3[J]. Chem Commun (Camb),2011,47(35):9789−9791. doi: 10.1039/c1cc12469b [15] MARTíNEZ-FRANCO R, MOLINER M, FRANCH C, KUSTOV A, CORMA A. Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx[J]. Appl Catal B: Environ,2012,127:273−280. doi: 10.1016/j.apcatb.2012.08.034 [16] HOCEVAR S, BATISTA J, KAUCIC V. Acidity and catalytic activity of MeAPSO-44 (Me = Co, Mn, Cr, Zn, Mg), SAPO-44, AIPO4-5, and AIPO4-14 molecular sieves in methanol dehydration[J]. J Catal,1993,139(2):351−361. doi: 10.1006/jcat.1993.1030 [17] BHAUMIK P, DHEPE P L. Efficient, stable, and reusable silicoaluminophosphate for the one-Pot production of furfural from hemicellulose[J]. ACS Catal,2013,3(10):2299−2303. doi: 10.1021/cs400495j [18] FAN D, TIAN P, SU X, YUAN Y, WANG D, WANG C, YANG M, WANG L, XU S, LIU Z. Aminothermal synthesis of CHA-type SAPO molecular sieves and their catalytic performance in methanol to olefins (MTO) reaction[J]. J Mater Chem A,2013,1(45):14206−14213. doi: 10.1039/c3ta12829f [19] XIN Y, WANG X, LI Q, MA X, QI Y, ZHENG L, ANDERSON J A, ZHANG Z. The potential of Cu-SAPO-44 in the selective catalytic reduction of NOx with NH3[J]. ChemCatChem,2016,8(24):3740−3745. doi: 10.1002/cctc.201601159 [20] 周钰浩. Cu-SAPO-44分子筛脱硝催化剂的制备与性能[D]. 济南: 济南大学, 2015.ZHOU Yu-hao. Preparation and performance of Cu-SAPO-44 zeolite catalyst for denitrification[D]. Jinan: Jinan University, 2015. [21] 王聪颖, 周皞, 杨迪, 张恒, 赵辉爽, 叶必朝, 苏亚欣. 一步水热合成Cu-SSZ-13分子筛选择性催化C3H6还原NO[J]. 无机化学学报, 2021, 37(5): 853-866(WANG Cong-ying, ZHOU Hao, YANG Di, ZHANG Heng, ZHAO Hui-shuang, YE Bi-Chao, SU Ya-xin. Catalytic reduction of NO by C3H6 over Cu-SSZ-13 zeolites in one-step hydrothermal synthesis [J]. Chin J Inorg Chem, 201, 37(5): 853-866 [22] XIN Y, ZHANG N, WANG X, LI Q, MA X, QI Y, ZHENG L, ANDERSON J A, ZHANG Z. Efficient synthesis of the Cu-SAPO-44 zeolite with excellent activity for selective catalytic reduction of NOx by NH3[J]. Catal Today,2019,332:35−41. doi: 10.1016/j.cattod.2018.08.018 [23] ZHOU H, YANG D, WANG C-Y, ZHAO H-S, WU S-G, SU Y-X. Selective catalytic reduction of nitric oxide with propylene over one-step synthesized Cu-SAPO-34 catalysts[J]. Chin J Inorg Chem,2020,36(10):1997−2004. [24] ANDONOVA S, TAMM S, MONTREUIL C, LAMBERT C, OLSSON L. The effect of iron loading and hydrothermal aging on one-pot synthesized Fe/SAPO-34 for ammonia SCR[J]. Appl Catal B: Environ,2016,180:775−787. doi: 10.1016/j.apcatb.2015.07.007 [25] YANG D, ZHOU H, WANG C, ZHAO H, WEN N, HUANG S, ZHOU X, ZHANG H, DENG W, SU Y. NO selective catalytic reduction with propylene over one-pot synthesized Fe-SAPO-34 catalyst under diesel exhaust conditions[J]. Fuel,2021,290:119822−119831. doi: 10.1016/j.fuel.2020.119822 [26] LEE K, CHOI B, LEE C, OH K. Effects of SiO2/Al2O3 ratio, reaction atmosphere and metal additive on de-NOx performance of HC-SCR over Cu-based ZSM-5[J]. J Ind Eng Chem,2020,90:132−144. doi: 10.1016/j.jiec.2020.07.005 [27] NIU C, SHI X, LIU F, LIU K, XIE L, YOU Y, HE H. High hydrothermal stability of Cu–SAPO-34 catalysts for the NH3-SCR of NOx[J]. Chem Eng J,2016,294:254−263. doi: 10.1016/j.cej.2016.02.086 [28] ZHOU X, CHEN Z, GUO Z, YANG H, SHAO J, ZHANG X, ZHANG S. One-pot hydrothermal synthesis of dual metal incorporated CuCe-SAPO-34 zeolite for enhancing ammonia selective catalytic reduction[J]. J Hazard Mater,2021,405:124177−124188. doi: 10.1016/j.jhazmat.2020.124177 [29] ZHOU H, GE M, ZHAO H, WU S, LI M, SU Y. Selective catalytic reduction of nitric oxide with propylene over Fe/Beta catalysts under lean-burn conditions[J]. Catalysts,2019,9(2):205−222. doi: 10.3390/catal9020205 [30] YUAN M, SU Y, DENG W, ZHOU H. Porous clay heterostructures (PCHs) modified with copper ferrite spinel as catalyst for SCR of NO with C3H6[J]. Chem Eng J,2019,375:122091−122100. doi: 10.1016/j.cej.2019.122091 [31] LIU J, LIU J, ZHAO Z, SONG W, WEI Y, DUAN A, JIANG G. Synthesis of a chabazite-supported copper catalyst with full mesopores for selective catalytic reduction of nitrogen oxides at low temperature[J]. Chin J Catal,2016,37(5):750−759. doi: 10.1016/S1872-2067(15)61072-5 [32] GAO Z, ZHAO D, YANG Y, JIANG X, TIAN Y, DING T, LI X. Influence of copper locations on catalytic properties and activities of Cu/SAPO-34 in C3H6-SCR[J]. Ind Eng Chem Res,2021,60(19):6940−6949. [33] CAO Y, FENG X, XU H, LAN L, GONG M, CHEN Y. Novel promotional effect of yttrium on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx by NH3 (NH3-SCR)[J]. Catal Commun,2016,76:33−36. doi: 10.1016/j.catcom.2015.12.022 [34] CAO Y, ZOU S, LAN L, YANG Z, XU H, LIN T, GONG M, CHE N Y. Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx with ammonia[J]. J Mol Catal A: Chem,2015,398:304−311. doi: 10.1016/j.molcata.2014.12.020 [35] WANG L, GAUDET J R, LI W, WENG D. Migration of Cu species in Cu/SAPO-34 during hydrothermal aging[J]. J Catal,2013,306:68−77. doi: 10.1016/j.jcat.2013.06.010 [36] FAN S, XUE J, YU T, FAN D, HAO T, SHEN M, LI W. The effect of synthesis methods on Cu species and active sites over Cu/SAPO-34 for NH3-SCR reaction[J]. Catal Sci Technol,2013,3(9):2357−2364. doi: 10.1039/c3cy00267e [37] WAN Y, MA J, WANG Z, ZHOU W, KALIAGUINE S. Selective catalytic reduction of NO over Cu-Al-MCM-41[J]. J Catal,2004,227(1):242−252. doi: 10.1016/j.jcat.2004.07.016 [38] CHEN B, XU R, ZHANG R, LIU N. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu + for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia[J]. Environ Sci Technol,2014,48(23):13909−13916. doi: 10.1021/es503707c [39] SHAN Y, SHI X, DU J, YU Y, HE H. Cu-exchanged RTH-type zeolites for NH3-selective catalytic reduction of NOx: Cu distribution and hydrothermal stability[J]. Catal Sci Technol,2019,9(1):106−115. doi: 10.1039/C8CY01933A [40] YUAN D, LI X, ZHAO Q, ZHAO J, TADÉ M, LIU S. A novel CuTi-containing catalyst derived from hydrotalcite-like compounds for selective catalytic reduction of NO with C3H6 under lean-burn conditions[J]. J Catal,2014,309:268−279. doi: 10.1016/j.jcat.2013.09.010 [41] LI L, GUAN N. HC-SCR reaction pathways on ion exchanged ZSM-5 catalysts[J]. Microporous Mesoporous Mater,2009,117(1-2):450−457. doi: 10.1016/j.micromeso.2008.07.021 [42] GEREI S V, ROZHKOVA E V, GOROKHOVATSKY Y B. Propylene and oxygen chemisorption on cupric oxide and cuprous oxide catalysts[J]. J Catal,1973,28(3):341−350. doi: 10.1016/0021-9517(73)90127-9 [43] SHICHI A, SATSUMA A, HATTORI T. Influence of geometry-limited diffusion on the selective catalytic reduction of NO by hydrocarbons over Cu-exchanged zeolite[J]. Appl Catal B: Environ,2001,30(1/2):25−33. doi: 10.1016/S0926-3373(00)00216-2 [44] SHIMIZU K I, KAWABATA H, MAESHIMA H, SATSUMA A, HATTORI T. Intermediates in the selective reduction of NO by propene over Cu-Al2O3 catalysts: Transient in-situ FTIR study[J]. J Phys Chem B,2000,104(13):2885−2893. doi: 10.1021/jp9930705 [45] BURCH R. Knowledge and know-how in emission control for mobile applications[J]. Cat Rev-Sci Eng,2004,46(3-4):271−334. doi: 10.1081/CR-200036718 [46] DATYE A K, KALAKKAD D S, YAO M H, SMITH D J. Comparison of metal-support interactions in Pt/TiO2 and Pt/CeO2[J]. J Catal,1995,155(1):148−153. doi: 10.1006/jcat.1995.1196 [47] KȨPIŃSKI L, WOŁCYRZ M. Microstructure of Pd/CeO2 catalyst: Effect of high temperature reduction in hydrogen[J]. Appl Catal A: Gen,1997,150(2):197−220. doi: 10.1016/S0926-860X(96)00194-9 [48] JIE L, XINYONG L, QIDONG Z, CE H, DONGKE Z. Insight into the mechanism of selective catalytic reduction of NO(x) by propene over the Cu/Ti(0.7)Zr(0.3)O2 catalyst by Fourier transform infrared spectroscopy and density functional theory calculations[J]. Environ Sci Technol,2013,47(9):4528−4535. doi: 10.1021/es3049898 [49] ZHAO L, KANG M. Mechanism and regeneration of sulfur-poisoned Mn-promoted calcined NiAl hydrotalcite-like compounds for C3H6-SCR of NO[J]. RSC Adv,2020,10(7):3716−3725. doi: 10.1039/C9RA09087H -