留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu-SAPO-44选择性催化丙烯还原NO性能研究

张恒 周皞 温妮妮 王旭瑞 徐璐 苏亚欣

张恒, 周皞, 温妮妮, 王旭瑞, 徐璐, 苏亚欣. Cu-SAPO-44选择性催化丙烯还原NO性能研究[J]. 燃料化学学报(中英文), 2022, 50(8): 1064-1074. doi: 10.19906/j.cnki.JFCT.2022012
引用本文: 张恒, 周皞, 温妮妮, 王旭瑞, 徐璐, 苏亚欣. Cu-SAPO-44选择性催化丙烯还原NO性能研究[J]. 燃料化学学报(中英文), 2022, 50(8): 1064-1074. doi: 10.19906/j.cnki.JFCT.2022012
ZHANG Heng, ZHOU Hao, WEN Ni-ni, WANG Xu-rui, XU Lu, SU Ya-xin. Selective catalytic reduction of nitric oxide with propylene over one-step synthesized Cu-SAPO-44 catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1064-1074. doi: 10.19906/j.cnki.JFCT.2022012
Citation: ZHANG Heng, ZHOU Hao, WEN Ni-ni, WANG Xu-rui, XU Lu, SU Ya-xin. Selective catalytic reduction of nitric oxide with propylene over one-step synthesized Cu-SAPO-44 catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1064-1074. doi: 10.19906/j.cnki.JFCT.2022012

Cu-SAPO-44选择性催化丙烯还原NO性能研究

doi: 10.19906/j.cnki.JFCT.2022012
基金项目: 江苏省自然科学基金(BK20181161),国家自然科学基金(51278095),江苏省“333工程”科研项目(2018) 和江苏省高等学校优秀科技创新团队(2019)资助。
详细信息
    通讯作者:

    Tel: 0519-86332096, 021-67792522, E-mail: hzhou@czie.edu.cn

    suyx@dhu.edu.cn

  • 中图分类号: X511

Selective catalytic reduction of nitric oxide with propylene over one-step synthesized Cu-SAPO-44 catalysts

Funds: The project was supported by Natural Science Foundation of Jiangsu Province (BK20181161), National Natural Science Foundation of China (51278095), Jiangsu 333 Engineering Research Project (2018) and Jiangsu Provincial Excellent Science and Technology Innovation Team (2019).
  • 摘要: 以环己胺(CHA)和铜胺络合物(Cu-TEPA)为共模板剂,一步水热合成Cu-SAPO-44分子筛催化剂,用于贫燃条件下选择性催化丙烯还原NO(C3H6-SCR)。采用N2吸附-脱附、X射线衍射(XRD)、透射电子显微镜(TEM)、紫外可见光谱(UV-vis)、NH3程序升温脱附(NH3-TPD)和H2程序升温还原(H2-TPR)等方法对催化剂进行表征。与纯SAPO-44相比,Cu-TEPA的引入显著增强了分子筛的C3H6-SCR催化活性。当Cu/Al=0.25时,Cu-SAPO-44催化剂有着最大的比表面积、丰富的酸性位和较多的孤立Cu2+物种,具有最佳的脱硝性能。随着Cu-TEPA引入量的增加,铜物种会在分子筛表面聚集,生成相对较多无活性的CuO,从而降低了脱硝活性。原位红外光谱(In situ DRIFTS)研究表明,孤立的Cu2+有助于NO和 C3H6的吸附和活化,促进反应关键中间产物−NCO形成。50 h的持久性反应测试表明,Cu-SAPO-44催化剂始终保持>60%的NOx转化率和>90%的N2选择性,表现出良好的反应稳定性。
  • FIG. 1776.  FIG. 1776.

    FIG. 1776.  FIG. 1776.

    图  1  Cu-SAPO-44催化剂C3H6-SCR活性测试反应示意图

    Figure  1  Reaction diagram of catalyst C3H6-SCR test

    图  2  不同Cu含量的Cu-SAPO-44催化剂的XRD谱图

    Figure  2  XRD patterns of Cu-SAPO-44 catalyst samples with different Cu content and PDF cards of SAPO-44

    图  3  不同Cu含量的Cu-SAPO-44催化剂N2吸附-脱附等温曲线(a)和孔径分布(b)

    Figure  3  N2 adsorption-desorption isotherm (a) and pore size distribution curves (b) of Cu-SAPO-44 catalyst samples with different Cu contents

    图  4  Cu0.25-SAPO-44催化剂的TEM照片((a): (1)−(4))和HR-TEM照片((a): (5), (6)); Cu0.25-SAPO-44催化剂的元素能谱分布(b)

    Figure  4  TEM images ((a): (1)−(4)) and High-resolution TEM images ((a): (5), (6)) of Cu0.25-SAPO-44 catalyst sample; EDS mapping results (b) of Cu, Al, Si and P elements of Cu0.25-SAPO-44 catalyst sample

    图  5  不同Cu含量的Cu-SAPO-44催化剂的NH3-TPD谱图

    Figure  5  NH3-TPD spectra of Cu-SAPO-44 catalyst samples with different Cu contents

    图  6  不同Cu含量的Cu-SAPO-44催化剂的UV-vis谱图

    Figure  6  UV-vis spectra of Cu-SAPO-44 catalyst samples with different Cu contents

    图  7  不同Cu含量的Cu-SAPO-44催化剂的H2-TPR谱图

    Figure  7  H2-TPR profiles of Cu-SAPO-44 catalyst samples with different Cu contents

    图  8  不同Cu含量Cu-SAPO-44催化剂的NOx、C3H6转化率和N2选择性

    Figure  8  NOx, C3H6 conversion and N2 selectivity of Cu-SAPO-44 catalyst samples with different Cu contents (Test conditions: NO 0.05%, C3H6 0.05%, O2 10%, H2O 5%)

    图  9  Cu0.25-SAPO-44催化剂样品的脱硝持久性测试

    Figure  9  Long term DeNOx test over Cu0.25-SAPO-44 catalyst

    图  10  SAPO-44(a)、Cu0.25-SAPO-44(b) 催化剂样品上吸附NO + O2 + C3H6的原位红外谱图

    Figure  10  In situ DRIFTS spectra of NO + O2 + C3H6 adsorbed on SAPO-44(a), Cu0.25-SAPO-44(b) catalyst samples for 45 min and then adding C3H6

    图  11  Cu0.25-SAPO-44催化剂上NO + C3H6 + O2反应的原位红外光谱谱图

    Figure  11  In situ DRIFTS spectra of NO + C3H6 + O2 over Cu0.25-SAPO-44 catalyst sample

    表  1  实验过程中使用的试剂

    Table  1  Reagents are used during the experiment

    ReagentPurityManufacturer
    Al2O3>70%Shandong Guanghui New Material Company
    CuSO4·5H2OAR, >99%Sinopharm Chemical Reagent Co. LTD
    H3PO4AR, >85%Sinopharm Chemical Reagent Co. LTD
    SiO2>40%Aldrich
    H2OARLab-produced
    TEPACP, >90%Sinopharm Chemical Reagent Co. LTD
    CHACP, >90%Sinopharm Chemical Reagent Co. LTD
    NO0.50%NO + 99.5%N2Changzhou Wujin Huayang gas
    C3H65.01%C3H6 + 94.99%N2Changzhou Wujin Huayang gas
    O2≥99.999%Changzhou Wujin Huayang gas
    N2≥99.999%Changzhou Wujin Huayang gas
    下载: 导出CSV

    表  2  Cu-SAPO-44系列催化剂各种元素的成分

    Table  2  Content of each component of series Cu-SAPO-44 catalysts

    SampleElement content w/%
    CuAlPSi
    Cu0.05-SAPO-441.14916.42516.4035.617
    Cu0.15-SAPO-443.35116.31715.5295.699
    Cu0.25-SAPO-445.01615.02113.4636.654
    Cu0.35-SAPO-446.59214.92513.7466.579
    Cu0.45-SAPO-447.97514.50213.1346.380
    下载: 导出CSV

    表  3  Cu-SAPO-44系列催化剂的孔隙结构

    Table  3  Texture properties of series Cu-SAPO-34 catalysts

    SampleSBET / (m2·g−1)Pore volume / (cm3·g−1)Pore size / nm
    Cu0.05-SAPO-443940.1461.853
    Cu0.15-SAPO-444290.1581.789
    Cu0.25-SAPO-444880.1821.498
    Cu0.35-SAPO-444520.1661.650
    Cu0.45-SAPO-444430.1651.689
    下载: 导出CSV
  • [1] CAPEK L, NOVOVESKA K, SOBALIK Z, WICHTERLOVA B, CIDER L, JOBSON E. Cu-ZSM-5 zeolite highly active in reduction of NO with decane under water vapor presence - Comparison of decane, propane and propene by in situ FTIR[J]. Appl Catal B: Environ,2005,60(3/4):201−210. doi: 10.1016/j.apcatb.2005.02.033
    [2] KOMVOKIS V G, ILIOPOULOU E F, VASALOS I A, TRIANTAFYLLIDIS K S, MARSHALL C L. Development of optimized Cu-ZSM-5 deNOx catalytic materials both for HC-SCR applications and as FCC catalytic additives[J]. Appl Catal A: Gen,2007,325(2):345−352. doi: 10.1016/j.apcata.2007.02.035
    [3] HE H, ZHANG X, WU Q, ZHANG C, YU Y. Review of Ag/Al2O3-Reductant system in the selective catalytic reduction of NOx[J]. Catal Sur Asia,,2008,12(1):38−55. doi: 10.1007/s10563-007-9038-9
    [4] ČAPEK L, DĚDEČEK J, WICHTERLOVÁ B, CIDER L, JOBSON E, TOKAROVÁ V. Cu-ZSM-5 zeolite highly active in reduction of NO with decane: Effect of zeolite structural parameters on the catalyst performance[J]. Appl Catal B: Environ,2005,60(3/4):147−153. doi: 10.1016/j.apcatb.2005.02.026
    [5] DĚDEČEK J, BORTNOVSKY O, VONDROVÁ A, WICHTERLOVÁ B. Catalytic activity of Cu-Beta zeolite in NO decomposition: Effect of copper and aluminium distribution[J]. J Catal,2001,200(1):160−170. doi: 10.1006/jcat.2001.3195
    [6] WANG A Y, ARORA P, BERNIN D, KUMAR A, KAMASAMUDRAM K, OLSSON L. Investigation of the robust hydrothermal stability of Cu/LTA for NH3-SCR reaction[J]. Appl Catal B: Environ,2019,246:242−253. doi: 10.1016/j.apcatb.2019.01.039
    [7] KWAK J H, TONKYN R G, KIM D H, SZANYI J, PEDEN C H F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. J Catal,2010,275(2):187−190. doi: 10.1016/j.jcat.2010.07.031
    [8] GAO F, WALTER E D, KARP E M, LUO J, TONKYN R G, KWAK J H, SZANYI J, PEDEN C H F. Structure-activity relationships in over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. J Catal,2013,300:20−29. doi: 10.1016/j.jcat.2012.12.020
    [9] GAO F, WALTER E D, WASHTON N M, SZANYI J, PEDEN C H F. Synthesis and evaluation of Cu/SAPO-34 catalysts for NH3-SCR 2: Solid-state ion exchange and one-pot synthesis[J]. Appl Catal B: Environ,2015,162:501−514. doi: 10.1016/j.apcatb.2014.07.029
    [10] WANG J, FAN D, YU T, WANG J, HAO T, HU X, SHEN M, LI W. Improvement of low-temperature hydrothermal stability of Cu/SAPO-34 catalysts by Cu2 + species[J]. J Catal,2015,322:84−90. doi: 10.1016/j.jcat.2014.11.010
    [11] WANG A, WANG Y, WALTER E D, WASHTON N M, GUO Y, LU G, PEDEN C H F, GAO F. NH3-SCR on Cu, Fe and Cu + Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects[J]. Catal Today,2019,320:91−99. doi: 10.1016/j.cattod.2017.09.061
    [12] MA L, CHENG Y, CAVATAIO G, MCCABE R W, FU L, LI J. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust[J]. Chem Eng J,2013,225:323−330. doi: 10.1016/j.cej.2013.03.078
    [13] XIE L, LIU F, SHI X, XIAO F S, HE H. Effects of post-treatment method and Na co-cation on the hydrothermal stability of Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx with NH3[J]. Appl Catal B: Environ,2015,179:206−212. doi: 10.1016/j.apcatb.2015.05.032
    [14] REN L, ZHU L, YANG C, CHEN Y, SUN Q, ZHANG H, LI C, NAWAZ F, MENG X, XIAO F S. Designed copper-amine complex as an efficient template for one-pot synthesis of Cu-SSZ-13 zeolite with excellent activity for selective catalytic reduction of NOx by NH3[J]. Chem Commun (Camb),2011,47(35):9789−9791. doi: 10.1039/c1cc12469b
    [15] MARTíNEZ-FRANCO R, MOLINER M, FRANCH C, KUSTOV A, CORMA A. Rational direct synthesis methodology of very active and hydrothermally stable Cu-SAPO-34 molecular sieves for the SCR of NOx[J]. Appl Catal B: Environ,2012,127:273−280. doi: 10.1016/j.apcatb.2012.08.034
    [16] HOCEVAR S, BATISTA J, KAUCIC V. Acidity and catalytic activity of MeAPSO-44 (Me = Co, Mn, Cr, Zn, Mg), SAPO-44, AIPO4-5, and AIPO4-14 molecular sieves in methanol dehydration[J]. J Catal,1993,139(2):351−361. doi: 10.1006/jcat.1993.1030
    [17] BHAUMIK P, DHEPE P L. Efficient, stable, and reusable silicoaluminophosphate for the one-Pot production of furfural from hemicellulose[J]. ACS Catal,2013,3(10):2299−2303. doi: 10.1021/cs400495j
    [18] FAN D, TIAN P, SU X, YUAN Y, WANG D, WANG C, YANG M, WANG L, XU S, LIU Z. Aminothermal synthesis of CHA-type SAPO molecular sieves and their catalytic performance in methanol to olefins (MTO) reaction[J]. J Mater Chem A,2013,1(45):14206−14213. doi: 10.1039/c3ta12829f
    [19] XIN Y, WANG X, LI Q, MA X, QI Y, ZHENG L, ANDERSON J A, ZHANG Z. The potential of Cu-SAPO-44 in the selective catalytic reduction of NOx with NH3[J]. ChemCatChem,2016,8(24):3740−3745. doi: 10.1002/cctc.201601159
    [20] 周钰浩. Cu-SAPO-44分子筛脱硝催化剂的制备与性能[D]. 济南: 济南大学, 2015.

    ZHOU Yu-hao. Preparation and performance of Cu-SAPO-44 zeolite catalyst for denitrification[D]. Jinan: Jinan University, 2015.
    [21] 王聪颖, 周皞, 杨迪, 张恒, 赵辉爽, 叶必朝, 苏亚欣. 一步水热合成Cu-SSZ-13分子筛选择性催化C3H6还原NO[J]. 无机化学学报, 2021, 37(5): 853-866

    (WANG Cong-ying, ZHOU Hao, YANG Di, ZHANG Heng, ZHAO Hui-shuang, YE Bi-Chao, SU Ya-xin. Catalytic reduction of NO by C3H6 over Cu-SSZ-13 zeolites in one-step hydrothermal synthesis [J]. Chin J Inorg Chem, 201, 37(5): 853-866
    [22] XIN Y, ZHANG N, WANG X, LI Q, MA X, QI Y, ZHENG L, ANDERSON J A, ZHANG Z. Efficient synthesis of the Cu-SAPO-44 zeolite with excellent activity for selective catalytic reduction of NOx by NH3[J]. Catal Today,2019,332:35−41. doi: 10.1016/j.cattod.2018.08.018
    [23] ZHOU H, YANG D, WANG C-Y, ZHAO H-S, WU S-G, SU Y-X. Selective catalytic reduction of nitric oxide with propylene over one-step synthesized Cu-SAPO-34 catalysts[J]. Chin J Inorg Chem,2020,36(10):1997−2004.
    [24] ANDONOVA S, TAMM S, MONTREUIL C, LAMBERT C, OLSSON L. The effect of iron loading and hydrothermal aging on one-pot synthesized Fe/SAPO-34 for ammonia SCR[J]. Appl Catal B: Environ,2016,180:775−787. doi: 10.1016/j.apcatb.2015.07.007
    [25] YANG D, ZHOU H, WANG C, ZHAO H, WEN N, HUANG S, ZHOU X, ZHANG H, DENG W, SU Y. NO selective catalytic reduction with propylene over one-pot synthesized Fe-SAPO-34 catalyst under diesel exhaust conditions[J]. Fuel,2021,290:119822−119831. doi: 10.1016/j.fuel.2020.119822
    [26] LEE K, CHOI B, LEE C, OH K. Effects of SiO2/Al2O3 ratio, reaction atmosphere and metal additive on de-NOx performance of HC-SCR over Cu-based ZSM-5[J]. J Ind Eng Chem,2020,90:132−144. doi: 10.1016/j.jiec.2020.07.005
    [27] NIU C, SHI X, LIU F, LIU K, XIE L, YOU Y, HE H. High hydrothermal stability of Cu–SAPO-34 catalysts for the NH3-SCR of NOx[J]. Chem Eng J,2016,294:254−263. doi: 10.1016/j.cej.2016.02.086
    [28] ZHOU X, CHEN Z, GUO Z, YANG H, SHAO J, ZHANG X, ZHANG S. One-pot hydrothermal synthesis of dual metal incorporated CuCe-SAPO-34 zeolite for enhancing ammonia selective catalytic reduction[J]. J Hazard Mater,2021,405:124177−124188. doi: 10.1016/j.jhazmat.2020.124177
    [29] ZHOU H, GE M, ZHAO H, WU S, LI M, SU Y. Selective catalytic reduction of nitric oxide with propylene over Fe/Beta catalysts under lean-burn conditions[J]. Catalysts,2019,9(2):205−222. doi: 10.3390/catal9020205
    [30] YUAN M, SU Y, DENG W, ZHOU H. Porous clay heterostructures (PCHs) modified with copper ferrite spinel as catalyst for SCR of NO with C3H6[J]. Chem Eng J,2019,375:122091−122100. doi: 10.1016/j.cej.2019.122091
    [31] LIU J, LIU J, ZHAO Z, SONG W, WEI Y, DUAN A, JIANG G. Synthesis of a chabazite-supported copper catalyst with full mesopores for selective catalytic reduction of nitrogen oxides at low temperature[J]. Chin J Catal,2016,37(5):750−759. doi: 10.1016/S1872-2067(15)61072-5
    [32] GAO Z, ZHAO D, YANG Y, JIANG X, TIAN Y, DING T, LI X. Influence of copper locations on catalytic properties and activities of Cu/SAPO-34 in C3H6-SCR[J]. Ind Eng Chem Res,2021,60(19):6940−6949.
    [33] CAO Y, FENG X, XU H, LAN L, GONG M, CHEN Y. Novel promotional effect of yttrium on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx by NH3 (NH3-SCR)[J]. Catal Commun,2016,76:33−36. doi: 10.1016/j.catcom.2015.12.022
    [34] CAO Y, ZOU S, LAN L, YANG Z, XU H, LIN T, GONG M, CHE N Y. Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx with ammonia[J]. J Mol Catal A: Chem,2015,398:304−311. doi: 10.1016/j.molcata.2014.12.020
    [35] WANG L, GAUDET J R, LI W, WENG D. Migration of Cu species in Cu/SAPO-34 during hydrothermal aging[J]. J Catal,2013,306:68−77. doi: 10.1016/j.jcat.2013.06.010
    [36] FAN S, XUE J, YU T, FAN D, HAO T, SHEN M, LI W. The effect of synthesis methods on Cu species and active sites over Cu/SAPO-34 for NH3-SCR reaction[J]. Catal Sci Technol,2013,3(9):2357−2364. doi: 10.1039/c3cy00267e
    [37] WAN Y, MA J, WANG Z, ZHOU W, KALIAGUINE S. Selective catalytic reduction of NO over Cu-Al-MCM-41[J]. J Catal,2004,227(1):242−252. doi: 10.1016/j.jcat.2004.07.016
    [38] CHEN B, XU R, ZHANG R, LIU N. Economical way to synthesize SSZ-13 with abundant ion-exchanged Cu + for an extraordinary performance in selective catalytic reduction (SCR) of NOx by ammonia[J]. Environ Sci Technol,2014,48(23):13909−13916. doi: 10.1021/es503707c
    [39] SHAN Y, SHI X, DU J, YU Y, HE H. Cu-exchanged RTH-type zeolites for NH3-selective catalytic reduction of NOx: Cu distribution and hydrothermal stability[J]. Catal Sci Technol,2019,9(1):106−115. doi: 10.1039/C8CY01933A
    [40] YUAN D, LI X, ZHAO Q, ZHAO J, TADÉ M, LIU S. A novel CuTi-containing catalyst derived from hydrotalcite-like compounds for selective catalytic reduction of NO with C3H6 under lean-burn conditions[J]. J Catal,2014,309:268−279. doi: 10.1016/j.jcat.2013.09.010
    [41] LI L, GUAN N. HC-SCR reaction pathways on ion exchanged ZSM-5 catalysts[J]. Microporous Mesoporous Mater,2009,117(1-2):450−457. doi: 10.1016/j.micromeso.2008.07.021
    [42] GEREI S V, ROZHKOVA E V, GOROKHOVATSKY Y B. Propylene and oxygen chemisorption on cupric oxide and cuprous oxide catalysts[J]. J Catal,1973,28(3):341−350. doi: 10.1016/0021-9517(73)90127-9
    [43] SHICHI A, SATSUMA A, HATTORI T. Influence of geometry-limited diffusion on the selective catalytic reduction of NO by hydrocarbons over Cu-exchanged zeolite[J]. Appl Catal B: Environ,2001,30(1/2):25−33. doi: 10.1016/S0926-3373(00)00216-2
    [44] SHIMIZU K I, KAWABATA H, MAESHIMA H, SATSUMA A, HATTORI T. Intermediates in the selective reduction of NO by propene over Cu-Al2O3 catalysts: Transient in-situ FTIR study[J]. J Phys Chem B,2000,104(13):2885−2893. doi: 10.1021/jp9930705
    [45] BURCH R. Knowledge and know-how in emission control for mobile applications[J]. Cat Rev-Sci Eng,2004,46(3-4):271−334. doi: 10.1081/CR-200036718
    [46] DATYE A K, KALAKKAD D S, YAO M H, SMITH D J. Comparison of metal-support interactions in Pt/TiO2 and Pt/CeO2[J]. J Catal,1995,155(1):148−153. doi: 10.1006/jcat.1995.1196
    [47] KȨPIŃSKI L, WOŁCYRZ M. Microstructure of Pd/CeO2 catalyst: Effect of high temperature reduction in hydrogen[J]. Appl Catal A: Gen,1997,150(2):197−220. doi: 10.1016/S0926-860X(96)00194-9
    [48] JIE L, XINYONG L, QIDONG Z, CE H, DONGKE Z. Insight into the mechanism of selective catalytic reduction of NO(x) by propene over the Cu/Ti(0.7)Zr(0.3)O2 catalyst by Fourier transform infrared spectroscopy and density functional theory calculations[J]. Environ Sci Technol,2013,47(9):4528−4535. doi: 10.1021/es3049898
    [49] ZHAO L, KANG M. Mechanism and regeneration of sulfur-poisoned Mn-promoted calcined NiAl hydrotalcite-like compounds for C3H6-SCR of NO[J]. RSC Adv,2020,10(7):3716−3725. doi: 10.1039/C9RA09087H
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  211
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 修回日期:  2022-02-11
  • 录用日期:  2022-02-18
  • 网络出版日期:  2022-02-25
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回