留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机固废燃烧/气化过程As、Pb释放特性及热力学研究

李鹏程 张成 赵彦 余圣辉 方庆艳 陈刚

李鹏程, 张成, 赵彦, 余圣辉, 方庆艳, 陈刚. 有机固废燃烧/气化过程As、Pb释放特性及热力学研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022013
引用本文: 李鹏程, 张成, 赵彦, 余圣辉, 方庆艳, 陈刚. 有机固废燃烧/气化过程As、Pb释放特性及热力学研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022013
LI Peng-cheng, ZHANG Cheng, ZHAO Yan, YU Sheng-hui, FANG Qing-yan, CHEN Gang. Study on As and Pb release characteristics and thermodynamics of organic solid waste combustion/gasification process[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022013
Citation: LI Peng-cheng, ZHANG Cheng, ZHAO Yan, YU Sheng-hui, FANG Qing-yan, CHEN Gang. Study on As and Pb release characteristics and thermodynamics of organic solid waste combustion/gasification process[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022013

有机固废燃烧/气化过程As、Pb释放特性及热力学研究

doi: 10.19906/j.cnki.JFCT.2022013
基金项目: 国家重点研发计划(2019YFC1906801)资助
详细信息
    通讯作者:

    Tel: 027-87542417-8321, E-mail: chengzhang@mail.hust.edu.cn

  • 中图分类号: X705

Study on As and Pb release characteristics and thermodynamics of organic solid waste combustion/gasification process

Funds: The project was supported by the National Key Research and Development Program of China (2019YFC1906801).
More Information
  • 摘要: 在固定床反应器上,研究了不同种类有机固废在800−1100 ℃不同温度下燃烧/气化过程As、Pb的释放特性以及灰的组成成分,探究了CaO、SiO2、Al2O3对气化过程中重金属 As、Pb 迁移转化的影响。结果表明,有机固废气化过程As、Pb的释放率整体上随温度升高而升高,且气化过程As、Pb的释放率明显低于燃烧;灰产率随温度升高而降低,灰中主要含有CaO、Al2O3和SiO2;热力学研究表明,在高温下气化过程主要生成气态As和Pb,而燃烧过程则会生成大量的As2O3和PbO,As和Pb的单质沸点相比氧化物更高,因此,气化过程As、Pb的释放率比燃烧过程要低;在900 ℃以下CaO、SiO2、Al2O3会与As、Pb反应生成Ca3(AsO4)2、Ca2PbO4、PbSiO3和 AlAsO4,随着温度升高会逐渐分解,As、Pb的释放率逐渐升高,因此,气化温度应越低越好,并考虑适当增加有机固废中Ca、Si、Al含量,减少S、Cl含量来降低As、Pb在大气中的排放。
  • 图  1  固定床反应器实验系统示意图

    Figure  1  Fixed-bed reactor experimental system

    图  2  不同温度下有机固废燃烧/气化过程灰产率与As、Pb释放率的变化

    Figure  2  Curves of ash yield and As, Pb release rate of organic solid waste combustion/gasification process at different temperatures

    图  3  不同温度下有机固废燃烧/气化过程灰成分分析

    Figure  3  Results of ash composition analysis of organic solid waste combustion/gasification process at different temperatures

    图  4  燃烧/气化过程As的形态分布

    Figure  4  Morphology distribution of As during combustion/gasification process

    (a): combustion;(b): gasification

    图  5  燃烧/气化过程Pb的形态分布

    Figure  5  Morphology distribution of Pb during combustion/gasification process

    (a): combustion;(b): gasification

    图  6  气化过程CaO对As、Pb形态分布的影响

    Figure  6  Effect of CaO on As and Pb distribution in gasification process

    (a): As+ organic solid wastes +CaO;(b): Pb+ organic solid wastes +CaO

    图  7  气化过程SiO2对As、Pb形态分布的影响

    Figure  7  Effect of SiO2 on As and Pb distribution in gasification process

    (a): As+ organic solid wastes + SiO2;(b): Pb+ organic solid wastes + SiO2

    图  8  气化过程Al2O3对As、Pb形态分布的影响

    Figure  8  Effect of Al2O3 on As and Pb distribution in gasification process

    (a): As+ organic solid wastes + Al2O3;(b): Pb+ organic solid wastes + Al2O3

    表  1  原料的工业分析和元素分析

    Table  1  Industry and element analysis of raw materials

    SampleProximate analysis war/%Ultimate analysis wad/%
    MAVFCCHOaNSCl
    SL 0.69 1.41 94.46 3.44 82.11 7.88 3.79 4.97 0.04 0.11
    NL 25.08 7.41 64.17 3.34 37.25 5.17 24.12 0.74 0.16 0.07
    ZZ 6.79 11.49 78.34 3.38 35.73 5.10 40.46 0.37 0.23 0.13
    CY 32.54 6.89 55.19 5.38 21.18 2.71 32.91 1.34 0.28 0.15
    WF 13.74 14.73 60.94 10.59 48.98 3.40 31.48 0.97 1.26 0.74
    a: subtraction
    下载: 导出CSV

    表  2  原料中元素含量的ICP-MS分析

    Table  2  ICP-MS analysis of element content in raw materials

    SampleElement content/(mg·g−1)
    KNaAlFeCaMgSiAsPb
    SL 0.13 0.74 0.24 0.18 0.24 0.33 0.45 0.30 0.62
    NL 5.95 0.85 0.71 1.00 2.28 2.09 0.58 0.95 0.31
    ZZ 0.17 4.48 0.64 0.14 12.27 1.15 3.09 0.11 0.18
    CY 115.84 1.12 0.15 0.17 0.37 3.50 0.44 0.48 0.15
    WF 2.82 42.60 10.48 6.12 26.61 1.45 0.21 1.21 3.35
    下载: 导出CSV

    表  3  输入有机固废的初始条件

    Table  3  Initial conditions of input organic solid waste

    ElementCHONSClCaSiAlAsPb
    Quantity/mol40.834.026.20.070.040.020.660.450.390.50.5
    下载: 导出CSV
  • [1] 中华人民共和国国家统计局. 2020中国统计年鉴[M]. 北京: 中国统计出版社, 2020.

    National Bureau of Statistics of the People's Republic of China. China Statistical Yearbook 2020[M]. Beijing: China Statistics Press, 2020.
    [2] LI W, MA Z, HUANG Q, JIANG X. Distribution and leaching characteristics of heavy metals in a hazardous waste incinerator[J]. Fuel,2018,233:427−441. doi: 10.1016/j.fuel.2018.06.041
    [3] MUNASINGHE-ARACHCHIGE S P, ABEVSIRIWARDANA-ARACHCHIGE I S A, DELANKA-PEDIGE H M K, et al. Biofertilizer recovery from organic solid wastes via hydrothermal liquefaction[J]. Bioresour Technol. , 2021.
    [4] WANG P, HU Y, CHENG H . Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China[J]. Environ Pollut, 2019, 252(Part A): 461–475.
    [5] WANG C, ZHANG Y, SHI Y, et al. Research on collaborative control of Hg, As, Pb and Cr by electrostatic–fabric–integrated precipitator and wet flue gas desulphurization in coal–fired power plants[J]. Fuel,2017,210:527−534. doi: 10.1016/j.fuel.2017.08.108
    [6] YI H C, RAHMAN S, LAHURI H M, et al. Recent progress on CO–rich syngas production via CO2 gasification of various wastes: A critical review on efficiency, challenges and outlook[J]. Environ Pollut.,2021,278:116843. doi: 10.1016/j.envpol.2021.116843
    [7] LOMBARDI L, CARNEVALE E, CORTI A. A review of technologies and performances of thermal treatment systems for energy recovery from waste[J]. Waste Manage.,2014,37.
    [8] COUTO N, SILVA V, MONTEIRO E, et al. Numerical and experimental analysis of municipal solid wastes gasification process[J]. Appl Therm Eng.,2015,78:185−195. doi: 10.1016/j.applthermaleng.2014.12.036
    [9] JIAO F, ZHANG L, SONG W, et al. Effect of inorganic particulates on the condensation behavior of lead and zinc vapors upon flue gas cooling[J]. Proc Combust Inst,2013,34(2):2821−2829. doi: 10.1016/j.proci.2012.07.062
    [10] WANG Y, DUAN Y, HUANG Z, et al. Vapor–phase elemental mercury adsorption by Ca(OH)2 impregnated with MnO2 and Ag in fixed–bed system[J]. Asia–Pacific J Chem Eng,2010,5(3):479−487.
    [11] 蔡旭. 生活垃圾热处置过程中重金属形态及迁移转化特性[D]. 浙江大学, 2015.

    CAI Xun. The Speciation and Partitioning of Heavy Metal during Municipal Solid Waste Thermal Treatment[D]. Zhejiang Univ, 2015.
    [12] WU M H, LIN C L, ZENG W Y. Effect of waste incineration and gasification processes on heavy metal distribution[J]. Fuel Process Technol,2014,125:67−72. doi: 10.1016/j.fuproc.2014.03.027
    [13] MILLER B, D DUGWELL, KANDIYOTI R. The Fate of Trace Elements during the Co–Combustion of Wood–Bark with Waste[J]. Energy Fuels,2006,20(2):520−531. doi: 10.1021/ef058013r
    [14] PEDERSEN A J, FRANDSEN F J, RIBER C, et al. A Full–scale Study on the Partitioning of Trace Elements in Municipal Solid Waste Incineration—Effects of Firing Different Waste Types[J]. Energy Fuels,2008,23(4):3475−3489.
    [15] 黄隽, 池涌, 汤元君, 倪明江, 黄群星, 周昭志. 生活垃圾流化床热处置中重金属迁移分布研究[J]. 燃料化学学报,2016,44(01):120−128. doi: 10.3969/j.issn.0253-2409.2016.01.017

    DONG Jun, CHI Yong, TANG Yuan-jun, NI Ming-jiang, HUANG Qun-xing, ZHOU Zhao-zhi. Fate of heavy metals during fluidized–bed thermal treatment of municipal solid waste[J]. J Fuel Chem Technol,2016,44(01):120−128. doi: 10.3969/j.issn.0253-2409.2016.01.017
    [16] ZHOU C, LIU G, YAN Z, et al. Transformation behavior of mineral composition and trace elements during coal gangue combustion[J]. Fuel,2012,97(0):644−650.
    [17] 张伟, 陈晓平, 杨叙军, 宋联, 朱葛, 马吉亮, 刘道银, 梁财. 市政污泥中低温气化及重金属迁移转化特性[J]. 化工进展,2018,37(09):3657−3665.

    ZHANG Wei, CHEN Xiao-ping, YANG Xu-jun, SONG Lian, ZHU Ge, MA Ji-liang, LIU Dao-yin, LIANG Cai. Characteristics of medium–low temperature gasification of sewage sludge and migration and transformation of heavy metals[J]. Chem Ind Eng Prog,2018,37(09):3657−3665.
    [18] LANE D J, JOKINIEMI J, HEIMONEN M, et al. Thermal treatment of municipal solid waste incineration fly ash: Impact of gas atmosphere on the volatility of major, minor, and trace elements[J]. Waste Manage,2020,114:1−16. doi: 10.1016/j.wasman.2020.06.035
    [19] THAO N, CHIANG K Y. The migration, transformation and control of trace metals during the gasification of rice straw[J]. Chemosphere,2020,260:127540. doi: 10.1016/j.chemosphere.2020.127540
    [20] ZHANG H, HE P, SHAO L. Fate of heavy metals during municipal solid waste incineration in Shanghai[J]. J Hazard Mater,2008,156(1-3):365−373. doi: 10.1016/j.jhazmat.2007.12.025
    [21] ABANADES S, FLAMANT G., GAGNEPAIN B., et al. Fate of heavy metals during municipal solid waste incineration[J]. Waste Manage Res,2002,20(1):55−68. doi: 10.1177/0734242X0202000107
    [22] DURLAK S, K., BISWAS P., SHi J. Equilibrium analysis of the affect of temperature, moisture and sodium content on heavy metal emissions from municipal solid waste incinerators[J]. J Hazard Mater,1997,56(1-2):1−20. doi: 10.1016/S0304-3894(97)00002-2
    [23] 刘忠, 王硕, 白宝泉. 燃煤飞灰中矿物质对烟气中As, Se, Pb形态分布影响的热力学研究[J]. 燃料化学学报, 2020, 48(12): 8.

    LIU Zhong, WANG Shuo, BAI Bao-quan, Thermodynamic study on effect of minerals in fly ash on morphological distribution of As, Se and Pb in flue gas [J]. J Fuel Chem Technol, 2020, 48(12): 8.
    [24] ZHA J, HUANG Y, XIA W, XIA Z, LIU C, DONG L, LIU L. Effect of mineral reaction between calcium and aluminosilicate on heavy metal behavior during sludge incineration[J]. Fuel,2018,229:241−247. doi: 10.1016/j.fuel.2018.05.015
    [25] WANG C, LIU H, ZHANG Y, ZOU C, EDWARD J. Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies[J]. Energy Combust,2018,68(S):1−28.
    [26] 王晓琳, 刘薇, 吴畏, 任玉花. 城镇固体废物气化过程中重金属迁移[J]. 再生资源与循环经济,2015,8(11):29−33. doi: 10.3969/j.issn.1674-0912.2015.11.011

    WANG Xiao-lin, LIU Wei, WU Wei, REN Yu-hua. Movement of heavy metals during municipal solid wastes gasification[J]. Recyclable Resources and Circular Economy,2015,8(11):29−33. doi: 10.3969/j.issn.1674-0912.2015.11.011
    [27] Trouve G, Kauffinann A, Delfosse L. Comparative thermodynamic and experimental study of some heavy metal behaviours during automotive shredder residues incineration[J]. Waste Manage,1998,18(5):301−307. doi: 10.1016/S0956-053X(98)00040-3
    [28] CAHILL C A, NEWLAND L W. Comparative efficiencies of trace metal extraction from municipal incinerator ashes[J]. Int J Environ Anal Chem,1982,11(3-4):227−239. doi: 10.1080/03067318208078314
    [29] GULLETT B K, RAGHUNATHAN K. Reduction of coal–based metal emissions by furnace sorbent injection[J]. Energy Fuels,1994,8(5):1068−1076. doi: 10.1021/ef00047a009
    [30] BELEVI H, MOENCH H. Factors Determining the Element Behavior in Municipal Solid Waste Incinerators. 1. Field Studies[J]. Environ Sci Technol,2000,34(12):2501−2506. doi: 10.1021/es991078m
    [31] M. BELEN FOLGUERAS, RAMONA M DIAZ, XIBERTA J, et al. Volatilisation of trace elements for coal–sewage sludge blends during their combustion[J]. Fuel,2003,82(15):1939−1948.
    [32] CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co–combustion processes based on thermodynamic equilibrium calculations[J]. Fuel,2009,88(3):539−546. doi: 10.1016/j.fuel.2008.09.028
    [33] 王昕晔. 垃圾焚烧过程中铅和镉的挥发特性及其排放控制研究[D]. 东南大学, 2016.

    WANG Xin-ye. Volatilization characteristics and emissions control of lead and cadmium during waste incineration [D]. Southeast Univ, 2016.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  45
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 录用日期:  2022-02-20
  • 修回日期:  2022-01-30
  • 网络出版日期:  2022-03-01

目录

    /

    返回文章
    返回