Production of light bio-aromatics from co-catalytic fast pyrolysis of torrefied bamboo and high-density polyethylene
-
摘要: 轻质芳烃是化工领域重要的基础有机原料,可通过生物质和废塑料共催化热解技术路线制取。首先,采用烘焙预处理对毛竹进行脱氧改性提质;其次,通过Na2CO3溶液对微孔HZSM-5进行碱扩孔预处理,制备多级孔分子筛催化剂,最后通过烘焙毛竹和高密度聚乙烯(HDPE)共催化热解制取轻质芳烃,研究烘焙温度、Na2CO3浓度、原料共混比例、热解温度等因素对轻质芳烃产率的影响。结果表明,毛竹经烘焙脱氧预处理后,碳元素显著增加,氧元素显著下降,氧脱除率达到40.3%,高位热值从17.47 MJ/kg增加至25.64 MJ/kg;微孔HZSM-5经Na2CO3溶液碱扩孔预处理后,介孔容积、总孔容和平均孔径均增加,表明经过碱扩孔后HZSM-5形成了一定程度的介孔结构,使其转变为具有微-介孔结构的多级孔分子筛;烘焙毛竹热解产生的呋喃类含氧中间产物和HDPE热解产生的轻烯烃中间产物会发生“双烯合成”反应,成为轻质芳烃生成的关键协同催化反应,当烘焙温度为250 ℃、Na2CO3浓度为0.6 mol/L、烘焙毛竹和HDPE质量比为1∶2和热解温度为800 ℃时,BTX(苯、甲苯和二甲苯)等轻质芳烃产率达到最大值,为3.05×108 p.a./mg。Abstract: Light aromatics are extremely important building blocks in the chemical industry which can be produced from the co-catalytic fast pyrolysis (Co-CFP) of biomass and waste plastics. In this work, torrefaction pretreatment was first employed to remove the oxygen element from bamboo for improving the the quality of bamboo. Then, the hierarchical HZSM-5 was prepared by alkali pretreatment of HZSM-5 using Na2CO3 solution. At last, the optimal operation condition was investigated during Co-CFP of bamboo and high-density polyethylene (HDPE). Results showed that during torrefaction pretreatment process, the carbon content of bamboo gradually increased with the increase of torrefaction temperature, while the oxygen content decreased. The oxygen removal rate and HHV reached their maximum value of 40.3% and 25.64 MJ/kg at 300 ℃, respectively. The specific surface area, pore volume of mesopore, and average pore size of HZSM-5 increased after alkali pretreatment, indicating the development of the micro-mesoporous hierarchical structure in HZSM-5. The Diels-Alder reaction between the furans from pyrolysis of bamboo and the light olefins from pyrolysis of HDPE was the most important synergistic catalytic reaction which could highly promote the formation of light aromatics. The maximum yield of BTX (benzene, toluene, and xylene) was 3.05×108 p.a./mg when the torrefaction temperature, the concentration of Na2CO3, the mass ratio of torrefied bamboo and HDPE, and the pyrolysis temperature were 250 ℃, 0.6 mol/L, 1∶2, and 800 ℃, respectively.
-
表 1 烘焙前后毛竹和HDPE的基本特性分析
Table 1 Basic properties of raw and torrefied bamboo, HDPE
Sample Mass yield/
%Ultimate analysis/%
(dry and ash free basis)Proximate analysis/%
(dry basis)QHHV/
(MJ·kg−1)H/Ceff Energy yield/
%Oxygen removal efficiency/% C H O N S V FC A Bamboo − 47.44 6.63 45.16 0.24 0.53 82.66 16.45 0.89 17.47 0.25 − − BT-200 92.37 49.52 6.39 43.67 0.24 0.17 80.66 18.56 1.18 18.10 0.22 95.73 3.29 BT-225 85.62 51.42 6.17 41.64 0.29 0.49 76.49 21.91 1.6 18.79 0.23 92.09 7.81 BT-250 76.24 54.56 6.10 39.01 0.24 0.09 72.84 25.53 1.63 20.22 0.27 88.27 13.63 BT-275 62.62 57.59 5.82 36.24 0.24 0.12 62.62 35.50 1.88 21.34 0.27 76.51 19.76 BT-300 45.99 67.27 5.37 26.96 0.34 0.07 41.78 52.32 1.90 25.64 0.36 67.50 40.30 HDPE − 85.16 14.48 0.31 0.02 0.03 99.85 0.06 0.09 49.63 2.03 − − 表 2 碱改性前后HZSM-5催化剂的孔结构特征
Table 2 Textual properties of the parent and alkali pretreated hierarchical HZSM-5 catalysts
Textual properties HZSM-5 H-0.2 H-0.4 H-0.6 H-0.8 SBET /(m2·g−1) 308.05 298.72 296.28 310.63 295.60 vtotal /(cm3·g−1) 0.183 0.193 0.193 0.208 0.196 vmicro /(cm3·g−1) 0.144 0.131 0.131 0.134 0.129 vmeso /(cm3·g−1) 0.039 0.062 0.062 0.074 0.067 dpore/nm 2.421 2.631 2.660 2.725 2.715 表 3 碱改性前后HZSM-5催化剂的酸量
Table 3 Acid amount of the parent and alkali pretreated hierarchical HZSM-5
Acid amount HZSM-5 H-0.2 H-0.4 H-0.6 H-0.8 Weak acid/(mmol·g−1) 0.376 0.360 0.382 0.339 0.400 Strong acid/(mmol·g−1) 0.356 0.343 0.345 0.338 0.340 Total acid/(mmol·g−1) 0.732 0.703 0.727 0.737 0.721 -
[1] CHE Q F, YANG M J, WANG X H, YANG Q, WILLIAMS L C, YANG H P, ZOU J, ZENG K, ZHU Y J, CHEN Y Q, CHEN H P. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis[J]. Bioresour Technol,2019,278:248−254. doi: 10.1016/j.biortech.2019.01.081 [2] DORADO C, MULLEN C A, BOATENG A A. H-ZSM5 Catalyzed Co-pyrolysis of biomass and plastics[J]. ACS Sustainable Chem Eng,2017,2(2):301−311. [3] 戴厚良. 芳烃生产技术展望[J]. 石油炼制与化工,2013,44(1):1−10. doi: 10.3969/j.issn.1005-2399.2013.01.001DAI Hou-liang. Outlook of aromatics production technology[J]. Chin Pet Proc Pet Technol,2013,44(1):1−10. doi: 10.3969/j.issn.1005-2399.2013.01.001 [4] PARK Y K, LEE B, LEE H W, WATANABE A, JAE J, TSANG Y F, KIM Y M. Co-feeding effect of waste plastic films on the catalytic pyrolysis of Quercus variabilis over microporous HZSM-5 and HY catalysts[J]. Chem Eng J,2019,378:122151. doi: 10.1016/j.cej.2019.122151 [5] 孙来芝, 陈雷, 赵保峰, 杨双霞, 谢新苹, 孟凡军, 司洪宇. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J]. 化工学报,2019,70(8):3160−3166.SUN Lai-zhi, CHEN Lei, ZHAO Bao-feng, YANG Shuang-xia, XIE Xin-ping, MENG Fan-jun, SI Hong-yu. Experiment research on catalytic fast pyrolysis of biomass into bio-oils over Mo/ZSM-5 catalyst[J]. J Chem Ind Eng,2019,70(8):3160−3166. [6] HASSAN E B, ELSAYED I, ESEYIN A. Production high yields of aromatic hydrocarbons through catalytic fast pyrolysis of torrefied wood and polystyrene[J]. Fuel,2016,174:317−324. doi: 10.1016/j.fuel.2016.02.031 [7] 惠贺龙, 李松庚, 宋文立. 生物质与废塑料催化热解制芳烃(Ⅰ): 协同作用的强化[J]. 化工学报,2017,68(10):3832−3840.HUI He-long, LI Song-geng, SONG Wen-li. Aromatic hydrocarbon from catalytic pyrolysis of biomass and plastic wastes(Ⅰ): Enhancing synergistic effect[J]. J Chem Ind Eng,2017,68(10):3832−3840. [8] CHEN D Y, GAO A J, CEN K H, ZHANG J, CAO X B, MA Z Q. Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin[J]. Energy Convers Manage,2018,169:228−237. doi: 10.1016/j.enconman.2018.05.063 [9] CHEN H, CHENG H, ZHOU F, ZHOU F, CHEN K Q, QIAO K, LU X Y, OUYANG P K, FU J. Catalytic fast pyrolysis of rice straw to aromatic compounds over hierarchical HZSM-5 produced by alkali treatment and metal-modification[J]. J Anal Appl Pyrolysis,2018,131:76−84. doi: 10.1016/j.jaap.2018.02.009 [10] 马会霞, 周峰, 武光, 傅杰, 乔凯. 多级孔HZSM-5分子筛催化快速热解生物质制芳烃[J]. 化工学报,2020,71(11):5200−5207.MA Hui-xia, ZHOU Feng, WU Guang, FU Jie, QIAO Kai. Catalytic fast pyrolysis of biomass to aromatics over hierarchical HZSM-5[J]. J Chem Ind Eng,2020,71(11):5200−5207. [11] HUANG M, MA Z Q, ZHOU B, YANG Y Y, CHEN D Y. Enhancement of the production of bio-aromatics from renewable lignin by combined approach of torrefaction deoxygenation pretreatment and shape selective catalytic fast pyrolysis using metal modified zeolites[J]. Bioresour Technol,2020,301:122754. doi: 10.1016/j.biortech.2020.122754 [12] ZHANG S P, SU Y H, DING K, ZHUA S G, ZHANG H L, LIU X Z, XIONG Y Q. Effect of inorganic species on torrefaction process and product properties of rice husk[J]. Bioresour Technol,2018,265:450−455. doi: 10.1016/j.biortech.2018.06.042 [13] CHEN Y Q, YANG H P, YANG Q, HAO H M, ZHU B, CHEN H P. Torrefaction of agriculture straws and its application on biomass pyrolysis poly-generation[J]. Bioresour Technol,2014,156:70−77. doi: 10.1016/j.biortech.2013.12.088 [14] MEI Y Y, CHE Q F, YANG Q, DRAPER C, YANG H P, ZHANG S H, CHEN H P. Torrefaction of different parts from a corn stalk and its effect on the characterization of products[J]. Ind Crop Prod,2016,92:26−32. doi: 10.1016/j.indcrop.2016.07.021 [15] CHEN D Y, ZHOU J B, ZHANG Q S. Effects of torrefaction on the pyrolysis behavior and bio-oil properties of rice husk by using TG-FTIR and Py-GC/MS[J]. Energy Fuels,2014,28:5857−5863. doi: 10.1021/ef501189p [16] ZHENG A Q, ZHAO Z L, CHANG S, HUANG Z, WANG X B, HE F, LI H B. Effect of torrefaction on structure and fast pyrolysis behavior of corncobs[J]. Bioresour Technol,2013,128:370−377. doi: 10.1016/j.biortech.2012.10.067 [17] ZHENG A Q, ZHAO Z L, HUANG Z, ZHAO K, WEI G Q, WANG X B, HE F, LI H B. Catalytic fast pyrolysis of biomass pretreated by torrefaction with varying severity[J]. Energy Fuels,2014,28:5804−5811. doi: 10.1021/ef500892k [18] 毛俏婷, 胡俊豪, 赵雨佳, 闫舒航, 杨海平, 陈汉平. 生物质和废塑料混合热解协同特性研究[J]. 燃料化学学报,2020,48(3):286−292. doi: 10.3969/j.issn.0253-2409.2020.03.004MAO Qiao-ting, HU Jun-hao, ZHAO Yu-jia, YAN Shu-hang, YANG Han-ping, CHEN Han-ping. Synergistic effect during biomass and waste plastics co-pyrolysis[J]. J Fuel Chem Technol,2020,48(3):286−292. doi: 10.3969/j.issn.0253-2409.2020.03.004 [19] KAI X P, YANG T H, SHEN S Q, SHENG Q, LI R D. TG-FTIR-MS study of synergistic effects during copyrolysis of corn stalk and high-density polyethylene (HDPE)[J]. Energy Convers Manage,2019,181:202−213. doi: 10.1016/j.enconman.2018.11.065 [20] XUE X F, PAN Z Y, ZHANG C S, WANG D T, XIE Y Y, ZHANG R Q. Segmented catalytic copyrolysis of biomass and high-density polyethylene for aromatics production with MgCl2 and HZSM-5[J]. J Anal Appl Pyrolysis,2018,134:209−217. doi: 10.1016/j.jaap.2018.06.010 [21] HASSAN H, HAMEED B, LIM J K. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: synergistic effect and product distributions[J]. Energy,2020,191:116545. doi: 10.1016/j.energy.2019.116545 [22] SEBESTYÉN Z, BARTA E, BOZI J, BLAZSÓ M, CZÉGÉNY Z. Thermo-catalytic pyrolysis of biomass and plastic mixtures using HZSM-5[J]. Appl Energy,2017,207:114−122. doi: 10.1016/j.apenergy.2017.06.032 [23] CHATTOPADHYAY J, PATHAK T S, SRIVASTAVA R, SINGH A C. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis[J]. Energy,2016,103:513−521. doi: 10.1016/j.energy.2016.03.015 [24] ZHANG H Y, NIE J L, XIAO R, JIN B S, DONG C Q, XIAO G M. Catalytic Co-pyrolysis of biomass and different plastics (polyethylene, polypropylene, and polystyrene) to improve hydrocarbon yield in a fluidized-bed reactor[J]. Energy Fuels,2014,28:1940−1947. doi: 10.1021/ef4019299 [25] DORADO C, MULLEN C A, BOATENG A A. Origin of carbon in aromatic and olefin products derived from HZSM-5 catalyzed co-pyrolysis of cellulose and plastics via isotopic labeling[J]. Appl Catal B: Environ,2015,162:338−345. doi: 10.1016/j.apcatb.2014.07.006 [26] TIAN X J, DAI L L, WANG Y P, ZENG Z H, ZHANG S M, JIANG L, YANG X H, YUE L Q, LIU Y H, RUAN R. Influence of torrefaction pretreatment on corncobs: A study on fundamental characteristics, thermal behavior, and kinetic–ScienceDirect[J]. Bioresour Technol,2020,297:122490. doi: 10.1016/j.biortech.2019.122490 [27] WANG S R, DAI G X, RU B, ZHAO Y, WANG X L, XIAO G, LUO Z Y. Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose[J]. Energy,2017,120:864−871. doi: 10.1016/j.energy.2016.11.135 [28] MA Z Q, CHEN D Y, GU J, BAO B F, ZHANG Q S. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods[J]. Energy Convers Manage,2015,89:251−259. doi: 10.1016/j.enconman.2014.09.074 [29] WANG S R, DAI G X, RU B, ZHAO Y, WANG X L, ZHOU J S, LUO Z Y, CEN K F. Effects of torrefaction on hemicellulose structural characteristics and pyrolysis behaviors[J]. Bioresour Technolo,2016,218:1106−1114. doi: 10.1016/j.biortech.2016.07.075 [30] MA Z Q, YANG Y Y, MA Q Q, ZHOU H Z, LUO X P, LIU X H, WANG S R. Evolution of the chemical composition, functional group, pore structure and crystallographic structure of biochar from palm kernel shell pyrolysis under different temperatures[J]. J Anal and Appl Pyrolysis,2017,127:350−359. doi: 10.1016/j.jaap.2017.07.015 [31] ZHENG A Q, ZHAO Z L, CHANG S, HUANG Z, ZHAO K, WEI G Q, HE F, LI H B. Comparison of the effect of wet and dry torrefaction on chemical structure and pyrolysis behavior of corncobs[J]. Bioresour Technol,2015,176:15−22. doi: 10.1016/j.biortech.2014.10.157 [32] VERBOEKEND D, MITCHELL S, MILINA M, GROEN J C, RAMÍREZ J P. Full compositional flexibility in the preparation of mesoporous mfi zeolites by desilication[J]. J Phys Chem C,2011,115(29):14193−14203. doi: 10.1021/jp201671s [33] QIAO K, SHI X, ZHOU F, CHEN H, FU J, MA H X, HUANG H. Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical ZSM-5 zeolites treated with various alkalis[J]. Appl Catal A: Gen,2017,547:274−282. doi: 10.1016/j.apcata.2017.07.034 [34] 石冈, 林秀英, 范煜, 鲍晓军. ZSM-5分子筛的脱硅改性及加氢改质性能[J]. 燃料化学学报,2013,41(5):589−600. doi: 10.3969/j.issn.0253-2409.2013.05.010SHI Gang, LIN Xiu-ying, FAN Yu, BAO Xiao-jun. Desilication modification of ZSM-5 zeolite and its catalytic properties in hydro-upgrading[J]. J Fuel Chem Technol,2013,41(5):589−600. doi: 10.3969/j.issn.0253-2409.2013.05.010 [35] ZHAO L, XU C M, SHAN G, SHEN B. Effects of concentration on the alkali-treatment of ZSM-5 zeolite: Dividing points study[J]. J Mater Sci,2010,45(19):5406−5411. doi: 10.1007/s10853-010-4593-2 [36] JIA L Y, RAAD M, HAMIEH S, TOUFAILY J, HAMIEH T, BETTAHAR M M, MAUVIEL G, TARRIGHI M, PINARD L, DUFOUR A. Catalytic fast pyrolysis of biomass: Superior selectivity of hierarchical zeolites to aromatics[J]. Green Chem,2017,19:5442−5459. doi: 10.1039/C7GC02309J [37] WANG J, JIANG J C, ZHONG Z P, WANG K, WANG X B, ZHANG B, RUAN R, LI M, RAGAUSKAS A J. Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2/γ-Al2O3 and HZSM-5[J]. Energy Convers Manage,2019,196:759−767. doi: 10.1016/j.enconman.2019.06.009 [38] WANG J, ZHONG Z P, DING K, LI M, HAO N J, MENG X Z, RUAN R, RAGAUSKAS A J. Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system[J]. Energy Convers Manage,2019,180:60−71. doi: 10.1016/j.enconman.2018.10.056 -