留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镁铝物质的量比对MoSx/MgO-Al2O3催化剂COS加氢性能的影响

张晓霞 孙秋霞 卫藩婧 廖俊杰 常丽萍 鲍卫仁

张晓霞, 孙秋霞, 卫藩婧, 廖俊杰, 常丽萍, 鲍卫仁. 镁铝物质的量比对MoSx/MgO-Al2O3催化剂COS加氢性能的影响[J]. 燃料化学学报, 2022, 50(8): 1051-1063. doi: 10.19906/j.cnki.JFCT.2022015
引用本文: 张晓霞, 孙秋霞, 卫藩婧, 廖俊杰, 常丽萍, 鲍卫仁. 镁铝物质的量比对MoSx/MgO-Al2O3催化剂COS加氢性能的影响[J]. 燃料化学学报, 2022, 50(8): 1051-1063. doi: 10.19906/j.cnki.JFCT.2022015
ZHANG Xiao-xia, SUN Qiu-xia, WEI Fan-jing, LIAO Jun-jie, CHANG Li-ping, BAO Wei-ren. Effect of Mg/Al molar ratio on the COS hydrogenation performance of MoSx/MgO-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1051-1063. doi: 10.19906/j.cnki.JFCT.2022015
Citation: ZHANG Xiao-xia, SUN Qiu-xia, WEI Fan-jing, LIAO Jun-jie, CHANG Li-ping, BAO Wei-ren. Effect of Mg/Al molar ratio on the COS hydrogenation performance of MoSx/MgO-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(8): 1051-1063. doi: 10.19906/j.cnki.JFCT.2022015

镁铝物质的量比对MoSx/MgO-Al2O3催化剂COS加氢性能的影响

doi: 10.19906/j.cnki.JFCT.2022015
基金项目: 国家自然科学基金(22078222),山西省自然科学基金面上项目(201901D111119)和山西省高等学校科技创新项目资助
详细信息
    作者简介:

    张晓霞(1995—),女,硕士研究生,15735518399@163.com

    孙秋霞(1993—),女,硕士研究生,1600905710@qq.com

    通讯作者:

    E-mail: liaojunjie@tyut.edu.cn

  • 中图分类号: O643.38

Effect of Mg/Al molar ratio on the COS hydrogenation performance of MoSx/MgO-Al2O3 catalyst

Funds: The project was supported by the National Natural Science Foundation of China (22078222), Natural Foundation of Shanxi Province (201901D111119) and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi.
  • 摘要: 采用共沉淀法制得镁铝物质的量比为0、0.2、0.5、1.0的MgO-Al2O3载体,采用浸渍法负载活性组分钼,进行预硫化分别制得Mo/M-A0-S、Mo/M-A0.2-S、Mo/M-A0.5-S和Mo/M-A1.0-S催化剂。使用固定床实验装置评价了其催化转化焦炉煤气中COS加氢的性能,采用X光电子能谱和拉曼光谱等手段对催化剂的结构及Mo物种的存在形式进行了分析,将分析结果与镁铝物质的量比进行了关联,探讨了镁铝物质的量比对催化剂性能的影响。结果表明,改变镁铝物质的量比可依次调变MgO-Al2O3载体的物化结构、预硫化前样品中钼的分散及其与载体间相互作用以及催化剂中MoS2活性相的数量和堆叠方式,进而调控催化剂的活性和选择性。控制镁铝物质的量比符合MgAl2O4中镁铝化学计量比0.5时,最有利于生成MgAl2O4;MgAl2O4可减弱钼与载体间的相互作用,强化钼在载体表面的均匀分散,促使更多钼在预硫化过程中转变为MoS2活性相,进而提高催化剂的性能。Mo/M-A0.5-S催化剂的性能最佳,其在280 ℃,空速62000 h−1的条件下,前550 min可维持高达97.7%的COS转化率,近100%的H2S选择性。
  • FIG. 1775.  FIG. 1775.

    FIG. 1775.  FIG. 1775.

    图  1  催化剂制备与评价流程示意图

    Figure  1  Schematic diagram of equipment for catalyst preparation and evaluation

    图  2  镁铝物质的量比不同的催化剂的COS转化率(a)和H2S选择性(b)

    Figure  2  COS conversion (a) and H2S selectivity (b) of catalysts with different molar ratio of Mg to Al

    图  3  280 ℃下Mo/M-A0.2-S催化剂在去除COS的模拟焦炉煤气气氛中的H2S释放曲线(a)及其对H2S的选择性随反应时间的变化(b)

    Figure  3  H2S releasing curve of Mo/M-A0.2-S catalyst in simulated coke oven gas without COS at 280 ℃ (a) and the selectivity of this catalyst for H2S vs reaction time (b)

    图  4  不同MgO-Al2O3载体的XRD谱图(a)及其分峰拟合图(b),以及峰面积随镁铝物质的量比的变化(c)

    Figure  4  XRD patterns of different MgO-Al2O3 supports (a) and their deconvolution curves (b) and the change of peak area with Mg/Al molar ratio (c)

    图  5  不同样品的N2吸附-脱附等温线(a)及孔径分布(b)

    Figure  5  Nitrogen adsorption and desorption isotherms (a) and pore size distribution curves (b) of different samples

    图  6  不同样品的XRD谱图

    Figure  6  XRD patterns of different samples

    图  7  Mo/MgO-Al2O3样品全谱图(a)和Al(b),Mg(c)及Mo 3d(d)XPS谱图

    Figure  7  XPS survey spectra (a) and XPS spectra of Al (b), Mg (c) and Mo 3d (d) in Mo/MgO-Al2O3 samples

    图  8  不同样品的H2-TPR曲线

    Figure  8  H2-TPR profiles of different samples

    图  9  不同催化剂的XRD谱图

    Figure  9  XRD patterns of different catalysts

    图  10  不同催化剂的拉曼光谱谱图

    Figure  10  Raman spectra of different catalysts

    图  11  不同催化剂的Mo 3d XPS谱图(a)及分峰拟合图(b)

    Figure  11  Mo 3d XPS spectra (a) and peak deconvolution (b) of different catalysts

    a1: S 2s; b1: Mo4+ 3d5/2; c1: Mo5+ 3d5/2; d1: Mo4+ 3d3/2; e1: Mo6+ 3d5/2; f1: Mo5+ 3d3/2; g1: Mo6+ 3d3/2

    图  12  Mo/M-A0-S(a)和Mo/M-A0.5-S(b)催化剂的HRTEM照片

    Figure  12  HRTEM images of catalysts Mo/M-A0-S (a) and Mo/M-A0.5-S (b)

    图  13  Mo在Al2O3载体和MgO-Al2O3载体上负载的示意图

    Figure  13  Schematic diagram of Mo loaded on Al2O3 support and MgO-Al2O3 support

    图  14  Mo/M-A0.5-S催化剂上COS转化率(a)和H2S选择性(b)

    Figure  14  COS conversion (a) and H2S selectivity (b) over Mo/M-A0.5-S catalyst

    表  1  模拟焦炉煤气中各气体含量

    Table  1  Contents of each component in simulated coke oven gas

    ComponentCOSH2CH4CON2O2CO2
    Concentration φ/%0.1058.7726.708.093.480.822.04
    下载: 导出CSV

    表  2  不同样品的金属元素含量及镁铝物质的量比

    Table  2  Metal element contents and Mg/Al molar ratio of different samples

    SampleContent /%Mg/Al (molar ratio)
    MgAlMo
    Mo/M-A1.040.8544.428.261.03
    Mo/M-A0.526.5253.358.250.56
    Mo/M-A0.213.8563.778.260.24
    Mo/M-A0070.888.360
    下载: 导出CSV

    表  3  不同样品的BET比表面积及孔结构

    Table  3  BET specific surface area and pore structure parameters of different samples

    SampleSBET /
    (m2·g−1)
    Pore volume
    /(cm3·g−1)
    Pore diameter
    /nm
    Mo/M-A1.01390.379.92
    Mo/M-A0.51410.4712.67
    Mo/M-A0.22540.568.23
    Mo/M-A02620.385.17
    下载: 导出CSV

    表  4  不同样品表面Mo物种的分布

    Table  4  Distributions of Mo species on the surface of different samples

    SampleMo 3d /%
    I1 (3d5/2)I1 (3d3/2)I2 (3d5/2)I2 (3d3/2)
    Mo/M-A1.032.2320.0028.4019.36
    Mo/M-A0.540.4424.2121.3314.01
    Mo/M-A0.247.6332.4512.387.54
    Mo/M-A059.7340.2700
    I1: MoO3; I2: MgMoO4
    下载: 导出CSV

    表  5  不同样品H2-TPR谱图分峰拟合所得峰面积

    Table  5  Peak area obtained from deconvolution of H2-TPR profiles of different samples

    SamplePeak area /(a.u.)
    low temperature
    peak area
    high temperature
    peak area
    Mo/M-A1.021.56.5
    Mo/M-A0.526.55.2
    Mo/M-A0.217.515.4
    Mo/M-A015.516.5
    下载: 导出CSV

    表  6  催化剂的XPS分峰拟合

    Table  6  Deconvolution results of XPS spectra of catalysts

    SampleMo4+ /%Mo5+ /%Mo6+ /%w /%
    I1(228.7eV)I2(231.8eV)I1(230.5eV)I2(233.7eV)I1(232.6eV)I2(235.7eV)
    Mo/M-A1.0-S15.008.9410.647.0934.4223.9623.89
    Mo/M-A0.5-S14.3810.377.645.0937.5325.0024.75
    Mo/M-A0.2-S10.607.0712.358.2333.7328.0217.67
    Mo/M-A0-S9.836.5616.4610.9728.3227.8616.39
    下载: 导出CSV
  • [1] 高芝, 刘继雁, 许贵. 焦炉煤气合成甲烷技术[J]. 煤炭科学技术,2020,48(S2):61−64.

    GAO Zhi, LIU Ji-yan, XU Gui. Coke gas methane synthesis technology[J]. Coal Sci Technol,2020,48(S2):61−64.
    [2] DOU J, LI X, TAHMASEBI A, XU J, YU J. Desulfurization of coke oven gas using char-supported Fe-Zn-Mo catalysts: Mechanisms and thermodynamics[J]. Korean J Chem Eng,2015,32(11):2227−2235. doi: 10.1007/s11814-015-0059-1
    [3] RHODES C, RIDDEL S A, WEST J, WILLIAMS B P, HUTCHINGS G J. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: A review[J]. Catal Today,2000,59(3):443−464.
    [4] MUREDDU M, FERINO I, ROMBI E, CUTRUFELLO M G, DEIANA P, ARDU A, MUSINU A, PICCALUGA G, CANNAS C. ZnO/SBA-15 composites for mid-temperature removal of H2S: Synthesis, performance and regeneration studies[J]. Fuel,2012,102:691−700. doi: 10.1016/j.fuel.2012.05.013
    [5] 杨澜. 单层二硫化钼/石墨烯基复合催化剂的制备、表征及其羰基硫加氢性能研究[D]. 大连: 大连理工大学, 2017.

    YANG Lan. Fabrication and characterization of single-layer MoS2/graphene based composites and their application for the catalytic hydrogenation of carbonyl sulfide[D]. Dalian: Dalian University of Technology, 2017.
    [6] 柯明, 王雪颖, 鹿明, 宋昭峥, 蒋庆哲. Fe改性CoMo/γ-Al2O3选择性加氢脱硫催化剂[J]. 石油化工,2010,39(9):977−983.

    KE Ming, WANG Xue-ying, LU Ming, SONG Zhao-zheng, JIANG Qing-zhe. Fe modified CoMo/γ-Al2O3 selective hydrodesulfurization catalyst[J]. Petrochem Technol,2010,39(9):977−983.
    [7] 杜彩霞. 有机硫加氢转化催化剂的使用[J]. 工业催化,2003,11(9):13−17. doi: 10.3969/j.issn.1008-1143.2003.09.004

    DU Cai-xia. Application techniques of organic sulfur hydroconversion catalysts[J]. Ind Catal,2003,11(9):13−17. doi: 10.3969/j.issn.1008-1143.2003.09.004
    [8] 申文琴, 鲁军, 豆斌林, 赵国靖, 李海涛, 沙兴中. 热煤气中有机硫转化催化剂的选用[J]. 华东理工大学学报,2000,26(3):294−297.

    SHEN Wen-qin, LU Jun, DOU Bin-lin, ZHAO Guo-jing, LI Hai-tao, SHA Xing-zhong. Study of catalyst for the hydro-conversion of organic sulfur in hot coal gas[J]. J East China Univ Sci Technol,2000,26(3):294−297.
    [9] ZHANG C, LI P, LIU X, LIU T, JIANG Z, LI C. Morphology-performance relation of (Co)MoS2 catalysts in the hydrodesulfurization of FCC gasoline[J]. Appl Catal A: Gen,2018,556:20−28. doi: 10.1016/j.apcata.2018.02.026
    [10] HENSEN E J M, DE BEER V H J, VAN VEEN J A R, VAN SANTEN R A. A refinement on the notion of type I and II (Co)MoS phases in hydrotreating catalysts[J]. Catal Lett,2002,84(1):59−67.
    [11] HINNEMANN B, NøRSKOV J K, TOPSØE H. A density functional study of the chemical differences between type I and type II MoS2-based structures in hydrotreating catalysts[J]. J Phys Chem B,2005,109(6):2245−2253. doi: 10.1021/jp048842y
    [12] KLICPERA T, ZDRAŽIL M. Preparation of high-activity MgO-supported Co–Mo and Ni–Mo sulfide hydrodesulfurization catalysts[J]. J Catal,2002,206(2):314−320. doi: 10.1006/jcat.2001.3488
    [13] CALOCH B, RANA M S, ANCHEYTA J. Improved hydrogenolysis (C–S, C–M) function with basic supported hydrodesulfurization catalysts[J]. Catal Today,2004,98(1/2):91−98. doi: 10.1016/j.cattod.2004.07.023
    [14] KUMARA M, ABERUAGBA F, GUPTA J K, RAWAT K S, SHARMA L D, DHAR G M. Temperature-programmed reduction and acidic properties of molybdenum supported on MgO-Al2O3 and their correlation with catalytic activity[J]. J Mol Catal A:Chem,2004,213(2):217−223. doi: 10.1016/j.molcata.2003.12.005
    [15] GAO Y, ZHANG Z, WU J, YI X, ZHENG A, UMAR A, O'HARE D, WANG Q. Comprehensive investigation of CO2 adsorption on Mg-Al-CO3 LDH-derived mixed metal oxides[J]. J Mater Chem A,2013,1(41):12782−12790. doi: 10.1039/c3ta13039h
    [16] SHARMA U, TYAGI B, JASRA R V. Synthesis and characterization of Mg-Al-CO3 layered double hydroxide for CO2 adsorption[J]. Ind Eng Chem Res,2008,47(23):9588−9595. doi: 10.1021/ie800365t
    [17] TREJO F, RANA M S, ANCHEYTA J. CoMo/MgO-Al2O3 supported catalysts: An alternative approach to prepare HDS catalysts[J]. Catal Today,2008,130(2/4):327−336. doi: 10.1016/j.cattod.2007.10.105
    [18] WAN D, LIU Y, XIAO S, CHEN J, ZHANG J. Uptake fluoride from water by caclined Mg-Al-CO3 hydrotalcite: Mg/Al ratio effect on its structure, electrical affinity and adsorptive property[J]. Colloids Surf A,2015,469:307−314. doi: 10.1016/j.colsurfa.2015.01.045
    [19] ZHAO C, LIU L, RAO G, ZHAO H, WANG L, XU J, LI Y. Synthesis of novel MgAl layered double oxide grafted TiO2 cuboids and their photocatalytic activity on CO2 reduction with water vapor[J]. Catal Sci Technol,2015,5(6):3288−3295. doi: 10.1039/C5CY00216H
    [20] MOGICA-BETANCOURT J C, LÓPEZ-BENÍTEZ A, MONTIEL-LÓPEZ J R, MASSIN L, AOUINE M, VRINAT M, BERHAULT G, GUEVARA-LARA A. Interaction effects of nickel polyoxotungstate with the Al2O3-MgO support for application in dibenzothiophene hydrodesulfurization[J]. J Catal,2014,313(2):9−23.
    [21] 孙秋霞. Mo/MgO-Al2O3催化剂的制备及COS加氢性能的研究[D]. 太原: 太原理工大学, 2020.

    SUN Qiu-xia. Preparation of Mo/MgO-Al2O3 catalyst and its activity for COS hydrogenation[D]. Taiyuan: Taiyuan University of Technology, 2020.
    [22] 孙秋霞, 卫藩婧, 李宇杰, 鲍卫仁, 常丽萍, 廖俊杰. Mo/MgO-Al2O3催化剂的载体结构对COS加氢性能的影响[J]. 太原理工大学学报,2020,51(6):794−800.

    SUN Qiu-xia, WEI Fan-jing, LI Yu-jie, BAO Wei-ren, CHANG Li-ping, LIAO Jun-jie. Effect of support structure on COS hydrogenation property on Mo/MgO-Al2O3 catalyst[J]. J Taiyuan Univ Technol,2020,51(6):794−800.
    [23] MAHIPAL REDDY B, PADMANABHA REDDY E, SRINIVAS S T. Dispersion and activity of molybdena-alumina catalysts prepared by impregnation and solid/solid wetting methods[J]. J Catal,1992,136(1):50−58. doi: 10.1016/0021-9517(92)90105-Q
    [24] RAMíREZ J, CASTILLO P, CEDENO L, CUEVAS R, CASTILLO M, PALACIOS J, LÓPEZ-AGUDO A. Effect of boron addition on the activity and selectivity of hydrotreating CoMo/Al2O3 catalysts[J]. Appl Catal A: Gen,1995,132(2):317−334. doi: 10.1016/0926-860X(95)00166-2
    [25] STROHMEIER, BRIAN R. Magnesium aluminate (MgAl2O4) by XPS[J]. Surf Sci Spectra,1994,3(2):121−127. doi: 10.1116/1.1247772
    [26] WANG B, YU W, MENG D, LI Z, XU Y, MA X. Effect of citric acid on CoO-MoO3/Al2O3 catalysts for sulfur-resistant methanation[J]. React Kinet, Mech Catal,2018,125(1):111−126. doi: 10.1007/s11144-018-1396-y
    [27] MI J, YANNING, ZHANG J, CHEN C, LI D, LIN X, CHEN J, JIANG L. Effects of doping rare earth elements (Y, La, and Ce) on catalytic performances of CoMo/MgAlM for water gas shift reaction[J]. Ind Eng Chem Res,2018,57(3):833−844. doi: 10.1021/acs.iecr.7b03443
    [28] MI J, LAN Z, CHEN J, CAO Y, JIANG L. MgAl-LDO mixed oxide derived from layered double hydroxide: a potential support for CoMo sulfur-resistant water-gas shift catalyst[J]. Catal Commun,2016,78:44−47. doi: 10.1016/j.catcom.2016.01.031
    [29] RAMLI A, FAROOQ M, MOHAMAD M F. Mo/γ-Al2O3-MgO as a bifunctional catalyst for renewable hydrogen production from steam reforming of glycerol[J]. Adv Mater Res, 2014, 875877: 1534–1538.
    [30] LIU B, LIU L, CHAI Y, ZHAO J, LI Y, LIU D, LIU Y, LIU C. Effect of sulfiding conditions on the hydrodesulfurization performance of the ex-situ presulfided CoMoS/γ-Al2O3 catalysts[J]. Fuel,2018,234:1144−1153. doi: 10.1016/j.fuel.2018.08.001
    [31] 刘娟, 李文英, 冯杰, 高翔. Ni对MoS2基催化剂活性相及加氢脱氮脱硫性能的影响.[J]. 燃料化学学报,2021,49(10):1−9.

    LIU Juan, LI Wen-ying, FENG Jie, GAO Xiang. Influence of Ni on the active phase and hydrodenitrogenation and hydrodesulfurization activities of MoS2 catalysts[J]. J Fuel Chem Technol,2021,49(10):1−9.
    [32] CHARY K, RAMAKRISHNA H, RAO K, DHAR G M, RAO P K. Hydrodesulfurization on MoS2/MgO[J]. Catal Lett,1991,10(1):27−33.
    [33] YUAN H, QIHERIMA, XU G-T, LI H-F, LU L-J. Study of oxidic and sulfided selective hydrodesulfurization catalysts for gasoline using Raman spectroscopy[J]. Chin Chem Lett,2013,24(12):1041−1044. doi: 10.1016/j.cclet.2013.07.009
    [34] JIMENEZ SANDOVAL S, YANG D, FRINDT R F, IRWIN J C. Raman study and lattice dynamics of single molecular layers of MoS2[J]. Phys Rev B: Condens Matter,1991,44(8):3955−3962. doi: 10.1103/PhysRevB.44.3955
    [35] GONZáLEZ-CORTÉS S L, RODULFO-BAECHLER S M A, XIAO T, GREEN M L H. Rationalizing the catalytic performance of γ-alumina-supported Co(Ni)-Mo(W) HDS catalysts prepared by urea-matrix combustion synthesis[J]. Catal Lett,2006,111(1/2):57−66. doi: 10.1007/s10562-006-0130-y
    [36] HE M, KONG F, YIN G, LV Z, SUN X, SHI H, GAO B. Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS2 nanosheets[J]. RSC Adv,2018,8(26):14369−14376. doi: 10.1039/C8RA01147H
    [37] PORTELA L, GRANGE P, DELMON B. XPS and NO adsorption studies on alumina-supported Co-Mo catalysts sulfided by different procedures[J]. J Catal,1995,156(2):243−254. doi: 10.1006/jcat.1995.1251
    [38] LIAN Y, WANG H, ZHENG Q, FANG W, YANG Y. Effect of Mg/Al atom ratio of support on catalytic performance of Co-Mo/MgO-Al2O3 catalyst for water gas shift reaction[J]. J Nat Gas Chem,2009,18(2):161−166. doi: 10.1016/S1003-9953(08)60095-X
    [39] QIU L, XU G. Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts[J]. Appl Surf Sci,2010,256(11):3413−3417. doi: 10.1016/j.apsusc.2009.12.043
    [40] DAMYANOVA S, PETROV L, GRANGE P. XPS characterization of zirconium-promoted CoMo hydrodesulfurization catalysts[J]. Appl Catal A: Gen,2003,239(1/2):241−252.
    [41] FAN Y, XIAO H, SHI G, LIU H, QIAN Y, WANG T, GONG G, BAO X. Citric acid-assisted hydrothermal method for preparing NiW/USY-Al2O3 ultradeep hydrodesulfurization catalysts[J]. J Catal,2011,279(1):27−35. doi: 10.1016/j.jcat.2010.12.014
    [42] HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, VAN DER KRAAN A M, DE BEER V H J, VAN VEEN J A R, VAN SANTEN R A. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal,2001,199(2):224−235. doi: 10.1006/jcat.2000.3158
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  241
  • HTML全文浏览量:  52
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 录用日期:  2022-03-01
  • 修回日期:  2022-02-17
  • 网络出版日期:  2022-03-14
  • 刊出日期:  2022-08-26

目录

    /

    返回文章
    返回