留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铜改性黄铁矿催化剂的CO2电催化还原性能研究

杨予辰 杨应举 刘晶 熊勃

杨予辰, 杨应举, 刘晶, 熊勃. 铜改性黄铁矿催化剂的CO2电催化还原性能研究[J]. 燃料化学学报(中英文), 2022, 50(9): 1167-1174. doi: 10.19906/j.cnki.JFCT.2022025
引用本文: 杨予辰, 杨应举, 刘晶, 熊勃. 铜改性黄铁矿催化剂的CO2电催化还原性能研究[J]. 燃料化学学报(中英文), 2022, 50(9): 1167-1174. doi: 10.19906/j.cnki.JFCT.2022025
YANG Yu-chen, YANG Ying-ju, LIU Jing, XIONG Bo. Copper modification of pyrite for CO2 electrochemical reduction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1167-1174. doi: 10.19906/j.cnki.JFCT.2022025
Citation: YANG Yu-chen, YANG Ying-ju, LIU Jing, XIONG Bo. Copper modification of pyrite for CO2 electrochemical reduction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(9): 1167-1174. doi: 10.19906/j.cnki.JFCT.2022025

铜改性黄铁矿催化剂的CO2电催化还原性能研究

doi: 10.19906/j.cnki.JFCT.2022025
基金项目: 中央高校基本科研基金(2019kfyRCPY021)资助
详细信息
    通讯作者:

    Tel: 027-87542417,E-mail:liujing27@mail.hust.edu.cn

  • 中图分类号: TK16

Copper modification of pyrite for CO2 electrochemical reduction

Funds: The project was supported by Fundamental Research Funds for the Central Universities (2019kfyRCPY021)
  • 摘要: CO2电催化还原合成高附加值燃料为CO2转化利用提供了一条可持续发展的途径。然而,开发具有优异催化活性和产物选择性的电催化剂仍面临巨大的挑战。本研究制备了铜改性黄铁矿催化剂CuxFe1−xS2,采用XRD、XPS、SEM等表征分析方法研究了催化剂的物理化学性质,并研究了催化剂的CO2电催化还原活性和产物选择性。实验结果表明,Cu掺杂可以调控催化剂纳米片的尺寸,同时可以抑制FeS2在空气中的氧化。Cu0.33Fe0.67S2比FeS2表现出更好的催化反应活性,在(−1.5) − (−1.6) V vs. RHE,CO2电催化还原的含碳产物法拉第效率为50.8%,电流密度为23.8 mA/cm2。相比于FeS2催化剂,电流密度提高了71.2%。Cu0.09Fe0.91S2在−1.3 V vs. RHE下生成C3H6的法拉第效率为21.8%,显著高于目前文献中已报道的法拉第效率。因此,CuxFe1−xS2是一种比较有前景的CO2电催化还原催化剂。
  • FIG. 1880.  FIG. 1880.

    FIG. 1880.  FIG. 1880.

    图  1  催化剂制备流程示意图

    Figure  1  Flow chart of catalyst preparation

    图  2  CuxFe1−xS2催化剂的XRD衍射谱图

    Figure  2  XRD patterns of CuxFe1−xS2 catalysts

    图  3  CuxFe1−xS2催化剂的SEM照片:(a) FeS2;(b) Cu0.05Fe0.95S2;(c) Cu0.09Fe0.91S2;(d) Cu0.17Fe0.83S2;(e) Cu0.33Fe0.67S2

    Figure  3  SEM images of CuxFe1−xS2 catalysts: (a) FeS2; (b) Cu0.05Fe0.95S2; (c) Cu0.09Fe0.91S2; (d) Cu0.17Fe0.83S2; (e) Cu0.33Fe0.67S2

    图  4  样品的Fe 2p、S 2p XPS光谱和FeS2样品的XPS光谱谱图

    Figure  4  (a) Fe 2p XPS spectrum, (b) S 2p XPS spectrum, and (c) XPS survey spectrum of FeS2 sample

    图  5  Cu0.33Fe0.67S2样品的XPS光谱和样品的S 2p 、Fe 2p、Cu 2p XPS光谱谱图

    Figure  5  (a) XPS survey spectrum, (b) S 2p XPS spectrum, (c) Fe 2p XPS spectrum, and (d) Cu 2p XPS spectrum of Cu0.33Fe0.67S2 sample

    图  6  CuxFe1−xS2催化剂在CO2饱和的0.2 moL/L KHCO3和0.1 moL/L NaOH混合溶液中的(a) CV、(b) LSV曲线

    Figure  6  (a) CV curve; (b) LSV curve of CuxFe1−xS2 catalyst in CO2-saturated mixed solution of 0.2 moL/L KHCO3 and 0.1 moL/L NaOH

    图  7  FeS2和Cu0.33Fe0.67S2催化剂的稳定性测试

    Figure  7  Stability of FeS2 and Cu0.33Fe0.67S2 catalyst at −1.2 V vs. RHE

    图  8  Cu掺杂量对CO和C2H6法拉第效率的影响

    Figure  8  Influence of different Cu doping loadings on the Faraday efficiency of CO and C2H6

    (a): CO Faraday efficiency; (b): C2H6 Faraday efficiency

    图  9  H2、CO、C2H6、C3H6的法拉第效率

    Figure  9  Selectivity of H2, CO, C2H6 and C3H6 under different reaction voltages: (a) −1.2 V vs. RHE; (b) −1.3 V vs. RHE; (c) −1.4 V vs. RHE; (d) −1.5 V vs. RHE

    表  1  Cu基催化剂上CO2电催化还原产生C2+产物的法拉第效率

    Table  1  Summary of CO2RR towards C2+ Faradaic efficiency on different catalysts

    CatalystE/ (V vs. RHE)Faradaic efficiency/%Ref.
    ethanepropenepropanol
    Cu2O derived Cu nanoparticle−1.106.0[18]
    Ag-Cu2OPS−1.201.6[20]
    Cu nanowire array−1.108.0[21]
    Cu(100) single electrode−1.001.5[22]
    18 nm Cu−1.035.4[23]
    Nanoporous Cu−0.674.5[24]
    Surface reconstructed Cu−2.605.0[25]
    Plasma-Cu nanocubes−1.009.0[19]
    Cu0.33Fe0.67S2−1.6023.9this work
    Cu0.09Fe0.91S2−1.3021.8this work
    下载: 导出CSV
  • [1] YADAV D K, SINGH D K, GANESAN V. Recent strategy(ies) for the electrocatalytic reduction of CO2: Ni single-atom catalysts for the selective electrochemical formation of CO in aqueous electrolytes[J]. Curr Opin Electrochem,2020,22:87−93. doi: 10.1016/j.coelec.2020.04.008
    [2] ALBO J, ALVAREZ-GUERRA M, CASTAO P, IRABIEN A. Towards the electrochemical conversion of carbon dioxide into methanol[J]. ChemInform,2015,17(4):2304−2324.
    [3] HAN N, DING P, HE L, LI Y. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate[J]. Adv Energy Mater,2020,10(11):1902338. doi: 10.1002/aenm.201902338
    [4] REN D, ANG B S-H, YEO B S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts[J]. ACS Catal,2016,6(12):8239−8247. doi: 10.1021/acscatal.6b02162
    [5] WU M, ZHU C, WANG K, LI G, DONG X, SONG Y, XUE J, CHEN W, WEI W, SUN Y. Promotion of CO2 electrochemical reduction via Cu nanodendrites[J]. ACS Appl Mater Interfaces,2020,12(10):11562−11569. doi: 10.1021/acsami.9b21153
    [6] ZOU X, LIU M, WU J, AJAYAN P M, LI J, LIU B, YAKOBSON B I. How nitrogen-doped graphene quantum dots catalyze electroreduction of CO2 to hydrocarbons and oxygenates[J]. ACS Catal,2017,7(9):6245−6250. doi: 10.1021/acscatal.7b01839
    [7] ZHENG T, JIANG K, WANG H. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts[J]. Adv Mater,2018,30(48):1802066. doi: 10.1002/adma.201802066
    [8] YAN L, SU W, CAO X, ZHANG P, FAN Y. Copper-indium hybrid derived from indium-based metal-organic frameworks grown on oxidized copper foils promotes the efficient electroreduction of CO2 to CO[J]. Chem Eng J,2021,412(15):128718.
    [9] TU N N, DINH C T. Gas diffusion electrode design for electrochemical carbon dioxide reduction[J]. Chem Soc Rev,2020,49:7488−7504. doi: 10.1039/D0CS00230E
    [10] ZHAO Z, LU G. Computational screening of near-surface alloys for CO2 electroreduction[J]. ACS Catal,2018,8(5):3885−3894. doi: 10.1021/acscatal.7b03705
    [11] KIBRIA M G, EDWARDS J P, GABARDO C M E A. Electrochemical CO2 reduction into chemical feedstocks: From mechanistic electrocatalysis models to system design[J]. Adv Mater,2019,31(31):1807166. doi: 10.1002/adma.201807166
    [12] GENG P, ZHENG S, TANG H, ZHU R, ZHANG L, CAO S, XUE H, PANG H. Transition metal sulfides based on graphene for electrochemical energy storage[J]. Adv Energy Mater,2018,8(15):1703259. doi: 10.1002/aenm.201703259
    [13] YANG Y, LIU J, WU D, DING J, XIONG B. Two-dimensional pyrite supported transition metal for highly-efficient electrochemical CO2 reduction: A theoretical screening study[J]. Chem Eng J,2021,424:130541. doi: 10.1016/j.cej.2021.130541
    [14] GAO F Y, BAO R C, GAO M R E A. Electrochemical CO2-to-CO conversion: Electrocatalysts, electrolytes, and electrolyzers[J]. J Mater Chem A,2020,8(31):15458−15478. doi: 10.1039/D0TA03525D
    [15] XIONG B, LIU J, YANG Y, DING J, HUA Z. Tunable Cu-M bimetal catalysts enable syngas electrosynthesis from carbon dioxide[J]. NEW J CHEM,2022,46(3):1203−1209. doi: 10.1039/D1NJ04689F
    [16] VASILEFF A, ZHU Y, ZHI X, ZHAO Y, GE L, CHEN H M, ZHENG Y, QIAO S-Z. Electrochemical reduction of CO2 to ethane through stabilization of an ethoxy intermediate[J]. Angew Chem Int Ed,2020,59(44):19649−19653. doi: 10.1002/anie.202004846
    [17] HUANG Y, HANDOKO A D, HIRUNSIT P, YEO B S. Electrochemical reduction of CO2 using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene[J]. ACS Catal,2017,7(3):1749−1756. doi: 10.1021/acscatal.6b03147
    [18] KAS R, KORTLEVER R, MILBRAT A, KOPER M T M, MUL G, BALTRUSAITIS J. Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarbons[J]. Phys Chem Chem Phys,2014,16(24):12194−12201. doi: 10.1039/C4CP01520G
    [19] GAO D, ZEGKINOGLOU I, DIVINS N J, SCHOLTEN F, SINEV I, GROSSE P, ROLDAN CUENYA B. Plasma-activated copper nanocube catalysts for efficient carbon dioxide electroreduction to hydrocarbons and alcohols[J]. ACS Nano,2017,11(5):4825−4831. doi: 10.1021/acsnano.7b01257
    [20] LEE S, PARK G, LEE J. Importance of Ag-Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol[J]. ACS Catal,2017,7(12):8594−8604. doi: 10.1021/acscatal.7b02822
    [21] MA M, DJANASHVILI K, SMITH W A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over cu nanowire arrays[J]. Angew Chem Int Ed,2016,55(23):6680−6684. doi: 10.1002/anie.201601282
    [22] HORI Y, TAKAHASHI I, KOGA O, HOSHI N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes[J]. J Mol Catal A-Chem,2003,199(1/2):39−47. doi: 10.1016/S1381-1169(03)00016-5
    [23] HANDOKO A D, ONG C W, HUANG Y, LEE Z G, LIN L, PANETTI G B, YEO B S. Mechanistic insights into the selective electroreduction of carbon dioxide to ethylene on Cu2O-derived copper catalysts[J]. J Phys Chem C,2016,120(36):20058−20067. doi: 10.1021/acs.jpcc.6b07128
    [24] LV J-J, JOUNY M, LUC W, ZHU W, ZHU J-J, JIAO F. A highly porous copper electrocatalyst for carbon dioxide reduction[J]. Adv Mater,2018,30(49):1803111. doi: 10.1002/adma.201803111
    [25] KIBRIA M G, DINH C-T, SEIFITOKALDANI A, DE LUNA P, BURDYNY T, QUINTERO-BERMUDEZ R, ROSS M B, BUSHUYEV O S, DE ARGUER F P G, YANG P, SINTON D, SARGEN E H. A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons[J]. Adv Mater,2018,30(49):1804867. doi: 10.1002/adma.201804867
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  154
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-03-24
  • 录用日期:  2022-03-25
  • 网络出版日期:  2022-04-22
  • 刊出日期:  2022-10-21

目录

    /

    返回文章
    返回