留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ZnxCd1-xS光催化降解垃圾渗滤液及其产氢性能研究

张腾 蒋灶 杨政鑫 徐龙君 刘成伦

张腾, 蒋灶, 杨政鑫, 徐龙君, 刘成伦. ZnxCd1-xS光催化降解垃圾渗滤液及其产氢性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022027
引用本文: 张腾, 蒋灶, 杨政鑫, 徐龙君, 刘成伦. ZnxCd1-xS光催化降解垃圾渗滤液及其产氢性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022027
Zhang Teng, Jiang Zao, Yang Zhengxin, Xu Longjun, Liu Chenglun. ZnxCd1-xS FOR PHOTOCATALYTIC DEGRADATION OF LANDFILL LEACHATE AND ITS HYDROGEN PRODUCTION ACTIVITY[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022027
Citation: Zhang Teng, Jiang Zao, Yang Zhengxin, Xu Longjun, Liu Chenglun. ZnxCd1-xS FOR PHOTOCATALYTIC DEGRADATION OF LANDFILL LEACHATE AND ITS HYDROGEN PRODUCTION ACTIVITY[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022027

ZnxCd1-xS光催化降解垃圾渗滤液及其产氢性能研究

doi: 10.19906/j.cnki.JFCT.2022027
基金项目: 重庆市中小学生创新人才培养计划(CY210120)资助
详细信息
    通讯作者:

    Tel:13752820583,E-mail:xulj@cqu.edu.cn

  • 中图分类号: X703.1

ZnxCd1-xS FOR PHOTOCATALYTIC DEGRADATION OF LANDFILL LEACHATE AND ITS HYDROGEN PRODUCTION ACTIVITY

Funds: The project was supported by the Innovative Talents Training Program for Chongqing Primary and Secondary School Students (CY210120).
  • 摘要: 采用共沉淀法在常温下合成了具有高光催化活性的ZnxCd1-xS固溶体光催化剂,研究了其在模拟光下降解垃圾渗滤液(LFL)的适宜工艺条件、光催化分解废水的产氢性能及Zn原子含量、光催化剂的投入量和光照时间对LFL中COD去除率及产氢性能的影响。结果表明,当Zn∶Cd = 1∶1时,ZnxCd1-xS光催化剂的降解及产氢性能最优;在常温条件下,Zn0.5Cd0.5S投入量为1.0 g/L,光照180 min时,渗滤液中COD的去除率最高可达30.85%。使用Zn0.5Cd0.5S对降解后的垃圾渗滤液进行光催化分解产氢,当投入量为0.6 g/L,光照3 h的产氢量为1533 µmol,产氢速率可达8312 µmol/(g·h),明显高于光催化分解纯水制氢的产氢量;经过三次产氢循环后,其产氢量仍能保持在初始产氢量的83%以上。
  • 图  1  ZnxCd1-xS固溶体的XRD谱图

    Figure  1  XRD of ZnxCd1-xS solid solution

    图  2  样品的SEM照片及EDS谱图

    Figure  2  SEM and EDS images of the samples

    图  3  样品的紫外漫反射图及禁带宽度变化

    Figure  3  UV-vis DRS spectra and band gap of the samples

    图  4  Zn0.5Cd0.5S、CdS和ZnS的瞬时光电流响应图

    Figure  4  Photocurrent responses of Zn0.5Cd0.5S, CdS and ZnS

    图  5  ZnxCd1-xS光催化剂对LFL的COD去除效果

    Figure  5  COD removal efficiency of landfill leachate by ZnxCd1-xS

    图  6  光照时间对LFL的COD去除效果

    Figure  6  COD removal efficiency of landfill leachate with different illumination time

    图  7  Zn0.5Cd0.5S用量对LFL的COD去除率

    Figure  7  COD removal efficiency of landfill leachate with different Zn0.5Cd0.5S dosage

    图  8  ZnxCd1-xS分解降解后LFL的产氢活性

    Figure  8  Photocatalytic H2 evolution activities of degraded LFL with ZnxCd1-xS

    (a): H2 production; (b): H2 generation rate

    图  9  Zn0.5Cd0.5S用量对产氢活性的影响

    Figure  9  Photocatalytic H2 evolution activities of degraded LFL with different Zn0.5Cd0.5S dosage

    (a): H2 production; (b): H2 generation rate

    图  10  Zn0.5Cd0.5S的光催化稳定性能

    Figure  10  Photocatalytic stability of Zn0.5Cd0.5S

    图  11  Zn0.5Cd0.5S的光催化原理

    Figure  11  Photocatalytic mechanism of Zn0.5Cd0.5S

    表  1  光催化分解纯水及LFL的产氢性能

    Table  1  Photocatalytic H2 production of pure water and landfill leachate

    ObjectH2 production/µmol
    H2O601
    LFL(before)620
    LFL(after)1533
    Note : LFL ( before ) represents landfill leachate without photocatalytic degradation, LFL ( after ) represents the landfill leachate after photocatalytic degradation
    下载: 导出CSV
  • [1] HUANG D L, TANG Z H, PENG Z W, LAI C, ZENG G M, ZHANG C, XU P, CHENG M, WAN J, WANG R Z. Fabrication of water-compatible molecularly imprinted polymer based on beta-cyclodextrin modified magnetic chitosan and its application for selective removal of bisphenol A from aqueous solution[J]. J. Taiwan Inst. Chem. Eng,2017,77:113−121. doi: 10.1016/j.jtice.2017.04.030
    [2] XUE W, PENG Z, HUANG D, ZENG G M, WAN J, XU R, CHENG M, ZHANG C, JIANG D N, HU Z X. Nanoremediation of cadmium contaminated river sediments: Microbial response and organic carbon changes[J]. J. Hazard. Mater,2018,359:290−299. doi: 10.1016/j.jhazmat.2018.07.062
    [3] PENG S, PENG H, DING M, LI Y X. Efficient and stable photocatalytic hydrogen evolution from alkaline formaldehyde solution over Cd0.5Zn0.5S solid solution under visible light irradiation[J]. J. Photonics Energy,2017,7(1):016503. doi: 10.1117/1.JPE.7.016503
    [4] 刘占孟, 徐礼春, 赵杰峰, 李静, 胡锋平. 新型高级氧化技术处理垃圾渗滤液的研究进展[J]. 水处理技术.,2018,44(1):7−12.

    LIU Z M, XU L C, ZHAO J F, LI J, HU F P. Research Progress of Advanced Oxidation Treatment of Landfill Leachate[J]. Technol. Water Treat,2018,44(1):7−12.
    [5] PAN H, LEI H, LIU X, WEI H B, LIU S F. Assessment on the leakage hazard of landfill leachate using three-dimensional excitation-emission fluorescence and parallel factor analysis method[J]. Waste Manage,2017,67:214−221. doi: 10.1016/j.wasman.2017.05.041
    [6] CHATURVEDI H, KAUSHAL P. Comparative study of different Biological Processes for no-segregated Municipal Solid Waste (MSW) leachate treatment[J]. Environ. Technol. Innovation,2018,9:134−139. doi: 10.1016/j.eti.2017.11.008
    [7] ELLEUCH L, MESSAOUD M, DJEBALI K, ATTAFI M, CHERNI Y, KASMI M, ELAOUD A, TRABELSI I, CHATTI A. A new insight into highly contaminated landfill leachate treatment using Kefir grains pre-treatment combined with Ag-doped TiO2 photocatalytic process[J]. J. Hazard. Mater,2020,382:121119. doi: 10.1016/j.jhazmat.2019.121119
    [8] ZHANG K J, XU H, YANG C G, GUO K C, YE C F, ZHOU Z P, SUN Y X, LI C L. A facile approach for the synthesis of ZnxCd1-xS/C nanocomposite to enhance photocatalytic activity[J]. Mater. Sci. Semicond. Process,2020,107:104802. doi: 10.1016/j.mssp.2019.104802
    [9] WEI Z, LIU J, SHANGGUAN W. A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production[J]. Chin. J. Catal,2020,41(10):1440−1450. doi: 10.1016/S1872-2067(19)63448-0
    [10] VALLE F D, ISHIKAVA A, DOMEN K, MANO JA V D L, SANCHEZ-SANCHEZ M C, GONZALEZ I D, HERRERAS S, MOTA N, RIVAS M E, GALVAN M A A. Influence of Zn concentration in the activity of Cd1-xZnxS solid solutions for water splitting under visible light[J]. Catal. Today,2009,143(1-2):51−56. doi: 10.1016/j.cattod.2008.09.024
    [11] WAKERLEY D W, KUEHNEL M F, ORCHARD K L, LY K H, ROSSER T E, REISNER E. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst[J]. Nat. Energy,2017,2(4):17021. doi: 10.1038/nenergy.2017.21
    [12] JI G, XU X, YANG H, ZHAO X, HE X, ZHAO M. Enhanced Hydrogen Production from Sawdust Decomposition Using Hybrid-Functional Ni-CaO-Ca2SiO4 Materials[J]. Environ. Sci. Technol,2017,51(19):11484−11492. doi: 10.1021/acs.est.7b03481
    [13] CHAN C C, CHANG C C, HSU C H, WENG Y C, CHEN K Y, LIN H H, HUANG W C, CHENG S F. Efficient and stable photocatalytic hydrogen production from water splitting over ZnxCd1-xS solid solutions under visible light irradiation[J]. Int. J. Hydrogen Energy,2014,39(4):1630−1639. doi: 10.1016/j.ijhydene.2013.11.059
    [14] JIANG Z, LEI Y, ZHANG Z, OUYANG Z. Nitrogen-doped graphene quantum dots decorated ZnxCd1-xS semiconductor with tunable photoelectric properties[J]. J. Alloys Compd,2020,812:152096. doi: 10.1016/j.jallcom.2019.152096
    [15] WEI Z D, XU M Q, LIU J Y, GUO W Q, JIANG Z, SHANGGUAN W F. Simultaneous visible-light-induced hydrogen production enhancement and antibiotic wastewater degradation using MoS2@ZnxCd1-xS: Solid-solution-assisted photocatalysis[J]. Chin. J. Catal,2020,41(1):103−113. doi: 10.1016/S1872-2067(19)63479-0
    [16] QI S, WANG D, ZHAO Y, XU H. Core-shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with high photocatalytic activity for the degradation of organic dyes[J]. J. Mater. Sci. :Mater. Electron,2019,30(5):5284−5296. doi: 10.1007/s10854-019-00828-w
    [17] SUN R, SONG J, ZHAO H, LI X. Control on the homogeneity and crystallinity of Zn0.5Cd0.5S nanocomposite by different reaction conditions with high photocatalytic activity for hydrogen production from water[J]. Mater. Charact,2018,144:57−65. doi: 10.1016/j.matchar.2018.06.033
    [18] 卢勇宏, 吴平霄, 黄俊毅, 陈理想, 朱能武, 党志. 碱化辅助水热法制备高活性Cd1-xZnxS可见光催化剂[J]. 高等学校化学学报,2015,36(8):1563−1569.

    LU Y H, WU P X, HUANG J Y, CHEN L X, ZHU N W, DANG Z. Alkaline-assisted hydrothermal fabrication of Cd1-xZnxS with enhanced visible-light photocatalytic performance[J]. Chem. J. Chin. Univ,2015,36(8):1563−1569.
    [19] ZHAO S, XU J, MAO M, LI L J, LI X H. NiCo2S4@Zn0.5Cd0.5S with direct Z-scheme heterojunction constructed by band structure adjustment of ZnxCd1-xS for efficient photocatalytic H2, evolution[J]. Appl. Surf. Sci,2020,528:147016. doi: 10.1016/j.apsusc.2020.147016
    [20] SHEN C C, LIU Y N, ZHOU X, GUO H L, ZHAO Z W, LIANG K, XU A W. Large improvement of visible-light photocatalytic H2 evolution based on cocatalyst-free Zn0.5Cd0.5S synthesized through a two-step process[J]. Catal. Sci. Technol,2017,7(4):961−967. doi: 10.1039/C6CY02382G
    [21] 朱姗, 王晟, 刘福生, 李振, 张迪, 司高利. 固溶体ZnxCd1-xS光催化降解甲基橙水溶液[J]. 南京工业大学学报(自然科学版),2014,36(6):23−30+65.

    ZHU S, WANG S, LIU F S, LI Z, ZHANG D, SI G L. ZnxCd1-xS for degradation of methyl orange solution[J]. J. Nanjing Tech. Univ(Nat. Sci. ),2014,36(6):23−30+65.
    [22] LIU M, HE Y, CHEN H, ZHAO H, LI J. Biomolecule-assisted hydrothermal synthesis of ZnxCd1-xS nanocrystals and their outstanding photocatalytic performance for hydrogen production[J]. Int. J. Hydrogen Energy,2017,42(33):20970−20978. doi: 10.1016/j.ijhydene.2017.06.196
    [23] LI Q, MENG H, ZHOU P, ZHENG Y Q, WANG J, YU J G, GONG J R. Zn1-xCdxS Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2 Production Activity[J]. ACS Catal,2013,3(5):882−889. doi: 10.1021/cs4000975
    [24] LI Y, JIN Z, ZHANG L, FAN K. Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production[J]. Chin. J. Catal,2019,40(3):390−402. doi: 10.1016/S1872-2067(18)63173-0
    [25] 罗永春, 李慷, 张国庆, 王文旭, 冯治棋. 溶胶凝胶法制备钙钛矿型LaFeO3薄膜及其在碱性水溶液中的电化学行为[J]. 兰州理工大学学报.,2014,40(2):1−7.

    LUO Y C, LI K, ZHANG G Q, WANG W X, FENG Z Q. Preparation of LaFeO3 film by sol-gel method and their electrochemical properties in alkaline solution[J]. J. Lanzhou Univ. Technol,2014,40(2):1−7.
    [26] JING C, LUO B, LIN H, CHEN S. Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation[J]. J. Hazard. Mater,2011,190(1-3):700−706. doi: 10.1016/j.jhazmat.2011.03.112
    [27] KANSAL S K, SINGH M, SUD D. Studies on TiO2/ZnO photocatalyzed degradation of lignin[J]. J. Hazard. Mater,2008,153(1-2):412−417. doi: 10.1016/j.jhazmat.2007.08.091
    [28] LI W J, LI D Z, MENG S G, CHEN W, FU X Z, SHAO Y. Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1-xS/TiO2 nanocomposites[J]. Environ. Sci. Technol,2011,45(7):2987−2993. doi: 10.1021/es103041f
    [29] GAO X, JI X, NGUYEN T T, GONG X, CHAI R, GUO M. A novel composite material with wood-based carbon quantum dots modified Bi2MoO6 hollow microspheres[J]. Vac,2019,164:256−264. doi: 10.1016/j.vacuum.2019.03.032
    [30] 张正义, 张千, 楼紫阳, 刘伟, 朱宇楠, 袁春波, 于潇, 赵天涛. 催化臭氧氧化处理渗滤液RO浓液的氧化特性及光谱分析[J]. 化工学报. 2021, 72(10): 5362-5371. [30] 李丹丹. 混凝-Fenton法处理垃圾渗滤液的研究[D]. 重庆大学. 2009.

    ZHANG Z Y, ZHANG Q, LOU Z Y, LIU W, ZHU Y L, YUAN C B, YU X, ZHAO T T. Oxidation characteristics and spectral analysis of leachate reverse osmosis concentrate by catalytic ozonation[J]. J. Chem. Eng, 2021, 72(10): 5362-5371. LI D D. Study on treatment of leachate by combined coagulation-flocculation and different fenton oxidation method[D]. Chongqing University, 2009.
    [31] 李丹丹. 混凝-Fenton法处理垃圾渗滤液的研究[D]. 重庆大学. 2009.

    LI D D. Study on treatment of leachate by combined coagulation-flocculation and different fenton oxidation method[D]. Chongqing University, 2009.
    [32] 肖琳. 光催化污染物降解耦合光解水制氢[D]. 上海交通大学. 2008.

    XIAO L. Photocatalytic hydrogen production from water with simultaneous degradation of pollutant[D]. Shanghai Jiao Tong University, 2008.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  19
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-16
  • 录用日期:  2022-04-08
  • 修回日期:  2022-04-01
  • 网络出版日期:  2022-04-27

目录

    /

    返回文章
    返回