留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高硫高铁印染污泥焦脱汞性能及强化方法研究

罗光前 吕敏 邹仁杰 孙瑞泽 李显 姚洪

罗光前, 吕敏, 邹仁杰, 孙瑞泽, 李显, 姚洪. 高硫高铁印染污泥焦脱汞性能及强化方法研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022029
引用本文: 罗光前, 吕敏, 邹仁杰, 孙瑞泽, 李显, 姚洪. 高硫高铁印染污泥焦脱汞性能及强化方法研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022029
LUO Guang-qian, LÜ Min, ZOU Ren-jie, SUN Rui-ze, LI Xian, YAO Hong. Study on the mercury removal performance and strengthening method of high sulfur and iron content textile dyeing sludge char[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022029
Citation: LUO Guang-qian, LÜ Min, ZOU Ren-jie, SUN Rui-ze, LI Xian, YAO Hong. Study on the mercury removal performance and strengthening method of high sulfur and iron content textile dyeing sludge char[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022029

高硫高铁印染污泥焦脱汞性能及强化方法研究

doi: 10.19906/j.cnki.JFCT.2022029
基金项目: 国家自然科学基金(52076093)和深圳市科技创新委员会(JCYJ20808090953518)
详细信息
    通讯作者:

    Tel:+86-027-87545526,E-mail:guangqian.luo@mail.hust.edu.cn

  • 中图分类号: X705

Study on the mercury removal performance and strengthening method of high sulfur and iron content textile dyeing sludge char

Funds: The project was supported by National Natural Science Foundation of China (52076093) and Science, Technology and Innovation Commission of Shenzhen Municipality (JCYJ20190809095003718)
  • 摘要: 以高硫高铁印染污泥为原料制备热解焦,对热解前后样品中的硫和铁结合态进行了分析,并研究了热解焦对单质汞的脱除特性,进一步的,通过空气氧化、ZnCl2浸渍等手段对热解焦进行改性,提升其脱汞性能。研究结果表明,污泥中的硫主要为硫酸盐、硫化物、有机硫三部分,铁以三价和二价化合物存在。热解后,无机硫向有机硫转化,三价铁向二价铁转化,大部分硫和铁保留在热解焦中,部分生成磁黄铁矿 (Fe1−xS)。污泥原焦比表面积较小,具有一定的脱汞能力,以化学吸附为主导。空气氧化时间控制在12 h以内可以使高温(≥ 600 ℃)热解焦的汞吸附量提升46%以上。ZnCl2浸渍污泥热解制焦,可以进一步固硫生成ZnS,600 ℃热解的ZnCl2改性焦30 min内汞吸附量达到了28.71 μg/g,加以空气氧化,脱汞效率进一步提升,氧化12 h后性能最佳,汞吸附量为43.75 μg/g。
  • 图  1  污泥热解前后的XPS谱图

    Figure  1  XPS spectrum of sludge before and after pyrolysis

    图  2  污泥热解前后的XRD谱图

    Figure  2  XRD spectra of sludge before and after pyrolysis.

    图  3  不同温度污泥热解焦的脱汞效率与汞吸附量

    Figure  3  Mercury removal efficiency and adsorption capacity of sludge pyrolysis chars at different temperatures.

    Reaction conditions: 0.1 g samples, ${{C}}_{{0}}$ (100 ± 0.5) μg /m3, N2, 110 ℃, 30 min

    图  4  不同氧化时间污泥焦脱汞效率与汞吸附量

    Figure  4  Mercury removal efficiency and adsorption capacity of sludge chars at different oxidation time(a): 400 ℃; (b): 500 ℃; (c): 600 ℃; (d): 700 ℃

    Reaction conditions: 0.1 g samples, $ {{C}}_{{0}} $ (100 ± 0.5) μg /m3, N2, 110 ℃, 30 min

    图  5  不同处理方式下600 ℃污泥焦的XRD谱图

    Figure  5  XRD spectrum of sludge chars at 600 ℃ under different treatment methods (a): under different air oxidation time; (b): under ZnCl2/air oxidation modification.

    图  6  ZnCl2/空气改性污泥焦脱汞效率与汞吸附量

    Figure  6  Mercury removal efficiency and adsorption capacity of ZnCl2 / air modified sludge chars

    Reaction conditions: 0.1 g samples, $ {{C}}_{{0}} $ (100±0.5) μg /m3, N2, 110 ℃, 30 min

    表  1  污泥及热解焦特性

    Table  1  Characteristics of sludge and pyrolysis char

    SampleChar yield/%Ultimate analysis w/%Ash wd/%XRF analysis of ash w/%R(S)R(Fe)S/C
    CSNHFe2O3SO3ZnOCl
    C00032.2210.195.154.3432.9342.3016.381.41ND12.359.750.38
    C40066.3331.9013.475.472.4043.9751.3614.352.16ND16.0015.810.50
    C50061.9232.9213.755.221.9648.6049.9216.242.38ND16.9116.980.51
    C60057.2533.9814.104.601.6652.5756.9515.42-2.24ND17.3420.960.51
    C70052.9333.5814.544.101.4155.5452.5915.342.48ND17.9520.450.53
    Z-C60072.8917.767.232.891.5959.4127.7316.1128.4216.4011.0611.530.62
    d, dry base; ND, not detected; P(X), contents of components (Table 1); R(S), the relative content of S in char, R(S)=0.4×P(SO3P(Ash)+P(S), 0.4 is the proportion of S in SO3 molecular weight; R(Fe), the relative content of Fe in char, R(Fe)=0.7×P(Fe2O3P(Ash), 0.7 is the proportion of Fe in the molecular weight of Fe2O3; S/C=[0.4×P(SO3P(Ash)]/P(C)
    下载: 导出CSV

    表  2  不同热解焦孔隙结构

    Table  2  Pore structure of different pyrolysis char

    SampleSBET/
    (m2·g−1)
    Pore volume/
    (10−2 cm3·g−1)
    Average pore
    width/nm
    C0003.952.4024.33
    C40012.574.6214.69
    C50018.495.2611.38
    C60028.166.559.29
    C70017.605.4312.33
    Z-C4001.470.8723.40
    Z-C6007.983.3416.73
    SBET: specific surface area
    下载: 导出CSV

    表  3  样品热解前后不同结合态S、Fe相对含量

    Table  3  Relative contents of different combined-form S and Fe before and after pyrolysis

    Combined-formBefore pyrolysis/%After pyrolysis/%
    Sulfides55.2830.01
    Organic sulfur35.8859.59
    Sulfates8.8410.40
    Fe(Ш)46.5136.78
    Fe(Ⅱ)53.4963.21
    下载: 导出CSV
  • [1] RAN C, LIU Y, SIDDIQUI A R, SIYAL A A, MAO X, KANG Q, FU J, AO W, DAI J. Pyrolysis of textile dyeing sludge in fluidized bed and microwave- assisted auger reactor: Comparison, migration and distribution of heavy metals[J]. Energy,2019,182:337−348. doi: 10.1016/j.energy.2019.05.219
    [2] WANG M, MAO M, ZHANG M, WEN G, YANG Q, SU B, REN Q. Highly efficient treatment of textile dyeing sludge by CO2 thermal plasma gasification[J]. Waste Management,2019,90:29−36. doi: 10.1016/j.wasman.2019.04.025
    [3] 邓昌亚. 不同种类污泥与煤混合燃烧的灰熔融特性研究[D]. 武汉: 华中科技大学, 2016.

    DENG Chang-ya. The melting characteristics during co-combustion of coal with different sludge[D]. Wuhan: Huazhong University of Science and Technology, 2016.
    [4] BRIDLE T, SKRYPSKI-MANTELE D S. Assessment of sludge reuse options: A life-cycle approach[J]. Water Sci Technol,2000,41(8):131−135. doi: 10.2166/wst.2000.0152
    [5] HORTTANAINEN M, KAIKKO J, BERGMAN R, PASILA-LEHTINEN M, NERG J. Performance analysis of power generating sludge combustion plant and comparison against other sludge treatment technologies[J]. Appl Therm Eng,2011,30(2/3):110−118.
    [6] 李高磊, 郭沂权, 张世博, 王洪跃, 朱彬彬, 常林, 赵永椿, 张军营. 超低排放燃煤电厂SO3生成及控制的试验研究[J]. 中国电机工程学报,2019,39(4):1079−1086.

    LI Gao-lei, GUO Yi-quan, ZHANG Shi-bo, WANG Hong-yue, ZHU Bin-bin, CHANG Lin, ZHAO Yong-chun, ZHANG Jun-ying. Experimental research on SO3 generation and control in ultra-low emission coal-fired power plant[J]. Proc CSEE,2019,39(4):1079−1086.
    [7] 孙东晓, 董志强, 刘学明, 张吉琛, 陈钱宝, 雷思聪. 污泥基生物炭的制备技术及环境应用与研究热点[J]. 净水技术,2021,40(8):16−25.

    SUN Dong-xiao, DONG Zhi-qiang, LIU Xue-ming, ZHANG Ji-chen, CHEN Qian-bao, LEI Si-cong. Research hotspot and preparation technology and environmental application for sludge Biochar[J]. Water Purif Technol,2021,40(8):16−25.
    [8] RICE K M, WALKER E M, WU M, GILLETTE C, BLOUGH E R. Environmental mercury and its toxic effects[J]. J Prev Med Pub Health,2014,47(2):74−83. doi: 10.3961/jpmph.2014.47.2.74
    [9] YANG J, ZHAO Y, MA S, ZHU B, ZHANG J, ZHENG C. Mercury removal by magnetic biochar derived from simultaneous activation and magnetization of sawdust[J]. Environ Sci Technol,2016,50(21):12040−12047. doi: 10.1021/acs.est.6b03743
    [10] ZHAO S, PUDASAINEE D, DUAN Y, GUPTA R, LIU M, LU J. A review on mercury in coal combustion process: content and occurrence forms in coal, transformation, sampling methods, emission and control technologies[J]. Prog Energy Combust Sci,2019,73:26−64. doi: 10.1016/j.pecs.2019.02.001
    [11] WEN X, HUSSAIN A, LIU Y. A review on modification methods of adsorbents for elemental mercury from flue gas[J]. Chem Eng J,2018,346:692−711. doi: 10.1016/j.cej.2018.03.049
    [12] 洪亚光, 段钰锋, 朱纯, 周强, 佘敏, 杜鸿飞. 硫改性椰壳活性炭管道喷射脱汞实验研究[J]. 东南大学学报(自然科学版),2015,45(3):521−525.

    HONG Ya-guang, DUAN Yu-feng, ZHU Chun, ZHOU Qiang, SHE Min, DU Hong-fei. Experimental study on mercury adsorption of S-impregnated coconut shell activated carbon by duct injection[J]. J Southeast Univ: Nat Sci Ed,2015,45(3):521−525.
    [13] REDDY K, SHOAIBI A A, SRINIVASAKANNAN C. Mercury removal using metal sulfide porous carbon complex[J]. Process Saf Environ Prot,2018,114:153−158. doi: 10.1016/j.psep.2017.12.022
    [14] BHARDWAJ R, CHEN X, VIDIC R D. Impact of fly ash composition on mercury speciation in simulated flue gas[J]. Air Repair,2009,59(11):1331−1338.
    [15] ZHANG J L, WANG Z Y, XING X D, LIU Z J. Effect of aluminum oxide on the compressive strength of pellets[J]. Int J Min Met Mater,2014,21(4):339−344. doi: 10.1007/s12613-014-0914-9
    [16] WANG Y, SHEN B, HE C, YUE S, WANG F. Simultaneous removal of NO and Hg0 from flue gas over Mn-Ce/Ti-PILCs[J]. Environ Sci Technol,2015,49:9355−9363. doi: 10.1021/acs.est.5b01435
    [17] YANG J, ZHAO Y, ZHANG J, ZHENG C. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas[J]. Environ Sci Technol,2014,48(24):14837−14843. doi: 10.1021/es504419v
    [18] 卢龙, 王汝成, 薛纪越, 陈骏, 陆建军. 硫化物矿物的表面反应及其在矿山环境研究中的应用[J]. 岩石矿物学杂志,2001,20(4):387−394. doi: 10.3969/j.issn.1000-6524.2001.04.004

    LU Long, WANG Ru-cheng, XUE Ji-yue, CHEN Jun, LU Jian-jun. The surface reaction of sulfide minerals and its application to the study of mine environment[J]. Acta Petrol Mineral,2001,20(4):387−394. doi: 10.3969/j.issn.1000-6524.2001.04.004
    [19] TAN Z, SUN L, XIANG J, ZENG H, LIU Z, SONG H, QIU J. Gas-phase elemental mercury removal by novel carbon-based sorbents[J]. Carbon,2012,50(2):362−371. doi: 10.1016/j.carbon.2011.08.036
    [20] WANG H, ZHANG L, DENG T, RUAN H, HOU X, CORT R J, YANG B. ZnCl2 induced catalytic conversion of softwood lignin to aromatics and hydrocarbons[J]. Green Chem,2016,18(9):2802−2810. doi: 10.1039/C5GC02967H
    [21] XIA M, SHAO X, SUN Z, XU Z. Conversion of cotton textile wastes into porous carbons by chemical activation with ZnCl2, H3PO4, and FeCl3[J]. Environ Sci Pollut Res Int,2020,27(20):25186−25196. doi: 10.1007/s11356-020-08873-3
    [22] LI L, LI F. Preparation of carbonaceous adsorbent from straw and its adsorption performance for H2S removal[J]. J Air Waste Manage Assoc,2020,70(6):649−656. doi: 10.1080/10962247.2020.1754306
    [23] SONG Y, HU J, LIU J, EVRENDILEK F, BUYUKADA M. CO2-assisted co-pyrolysis of textile dyeing sludge and hyperaccumulator biomass: Dynamic and comparative analyses of evolved gases, bio-oils, biochars, and reaction mechanisms[J]. J Hazard Mater,2020,400:123190. doi: 10.1016/j.jhazmat.2020.123190
    [24] LIU J, ZHUO Z, XIE W, KUO J, LU X, BUYUKADA M, EVRENDILEK F. Interaction effects of chlorine and phosphorus on thermochemical behaviors of heavy metals during incineration of sulfur-rich textile dyeing sludge[J]. Chem Eng J,2018,351:897−911. doi: 10.1016/j.cej.2018.06.158
    [25] AHMAD M, RAJAPAKSHA A U, LIM J E, MING Z, BOLAN N, MOHAN D, VITHANAGE M, SANG S L, YONG S O. Biochar as a sorbent for contaminant management in soil and water: A review[J]. Chemosphere,2014,99:19−33. doi: 10.1016/j.chemosphere.2013.10.071
    [26] YUAN H, TAO L, HUANG H, ZHAO D, KOBAYASHI N, YONG C. Influence of pyrolysis temperature on physical and chemical properties of biochar made from sewage sludge[J]. J Anal Appl Pyrolysis,2015,112:284−289. doi: 10.1016/j.jaap.2015.01.010
    [27] 胡二峰, 赵立欣, 吴娟, 孟海波, 姚宗路, 丛宏斌, 吴雨浓. 生物质热解影响因素及技术研究进展[J]. 农业工程学报,2018,34(14):212−220. doi: 10.11975/j.issn.1002-6819.2018.14.027

    HU Er-feng, ZHAO Li-xin, WU Juan, MENG Hai-bo, YAO Zong-lu, CONG Hong-bin, WU Yu-nong. Research advance on influence factors and technologies of biomass pyrolysis[J]. Trans Chin Soc Agric Eng,2018,34(14):212−220. doi: 10.11975/j.issn.1002-6819.2018.14.027
    [28] TANG H, XU M, HU H, YANG F, YANG Y, LIU H, LI X, YAO H. In-situ removal of sulfur from high sulfur solid waste during molten salt pyrolysis[J]. Fuel,2018,231:489−494. doi: 10.1016/j.fuel.2018.05.123
    [29] ZHANG D, YANI S. Sulphur transformation during pyrolysis of an australian lignite[J]. Proc Combust Inst,2011,33(2):1747−1753. doi: 10.1016/j.proci.2010.07.074
    [30] 王彦, 左宁, 姜媛媛, 陈芳媛. 污泥生物炭中氮硫行为及环境效应研究进展[J]. 化工进展,2020,39(4):1539−1549.

    WANG Yan, ZUO Ning, JIANG Yuan-yuan, CHEN Fang-yuan. Behavior and environmental effects of nitrogen and sulfur in sludge biochar[J]. Chem Ind Eng Prog,2020,39(4):1539−1549.
    [31] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl Surf Sci,2008,254(8):2441−2449. doi: 10.1016/j.apsusc.2007.09.063
    [32] LIKOSOVA E M, KELLER J, POUSSADE Y, FREGUIA S. A novel electrochemical process for the recovery and recycling of ferric chloride from precipitation sludge[J]. Water Res,2014,51:96−103. doi: 10.1016/j.watres.2013.12.020
    [33] 戎宇舟, 葛强, 李清, 吴伏安, 杨树成, 齐随涛. 制浆造纸厂富铁污泥性质及其回用为污泥调理剂研究[J]. 西安交通大学学报,2016,50(9):43−48. doi: 10.7652/xjtuxb201609007

    RONG Yu-zhou, GE Qiang, LI Qing, WU Fu-an, YANG Shu-cheng, QI Sui-tao. Study on properties of iron-rich sludge in pulp and paper industry and its recycling as sludge conditioning agent[J]. J Xi'an Jiaotong Univ,2016,50(9):43−48. doi: 10.7652/xjtuxb201609007
    [34] 郭慧卿. 基于同步辐射与模拟计算研究煤热解过程中硫的迁移行为[D]. 内蒙古: 内蒙古大学, 2021.

    GUO Hui-qing. The study of sulfur transformation behavior during coal pyrolysis by synchrotron radiation combined with simulation calculation[D]. Inner Mongolia: Inner Mongolia University, 2021.
    [35] ZHANG Y, LI Q, LIU X, XU B, YANG Y, JIANG T. A thermodynamic analysis on the roasting of pyrite[J]. Minerals,2019,9(4):220−220. doi: 10.3390/min9040220
    [36] 廖勇. 磁性可循环吸附剂集中控制燃煤烟气零价汞污染的研究[D]. 南京: 南京理工大学, 2017.

    LIAO Yong. Centralized control of elemental mercury in fuel gas by magnetic recyclable sorbents[D]. Nanjing: Nanjing University of Science and Technology, 2017.
    [37] 李娜, 韦红旗, 段钰锋, 王晨平, 佘敏, 胡鹏, 王双群. SO2与O2对硫改性石油焦吸附剂脱汞性能的影响[J]. 化工进展,2018,37(5):1908−1915.

    LI Na, WEI Hong-qi, DUAN Yu-feng, WANG Chen-ping, SHE Min, HU Peng, WANG Shuang-qun. Effects of SO2 and O2 on Hg0 removal capacity of sulfur modified petrol coke adsorbents[J]. Chem Ind Eng Prog.,2018,37(5):1908−1915.
    [38] TU Z, GUO C, ZHANG T, LU G, WAN J, LIAO C, DANG Z. Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans[J]. Hydrometallurgy,2017,167:58−65. doi: 10.1016/j.hydromet.2016.11.001
    [39] 王志豪. 间二甲苯氧化制间苯二甲酸反应中催化剂结构与性能的关系研究[D]. 上海: 华东理工大学, 2017.

    WANG Zhi-hao. Relationship between structure and performance of catalyst in m-xylene oxidized to isophthalic acid[D]. Shanghai: East China University of Science and Technology, 2017.
    [40] LI H, ZHANG M, ZHU L, YANG J. Stability of mercury on a novel mineral sulfide sorbent used for efficient mercury removal from coal combustion flue gas[J]. Environ Sci Pollut R,2018,25(28):28583−28593. doi: 10.1007/s11356-018-2896-z
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  2
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 录用日期:  2022-04-07
  • 修回日期:  2022-04-06
  • 网络出版日期:  2022-05-12

目录

    /

    返回文章
    返回