留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效草酸镍钴双金属电催化剂的制备及析氧性能研究

孙家祺 马自在 周兵 杨杰 王孝广

孙家祺, 马自在, 周兵, 杨杰, 王孝广. 高效草酸镍钴双金属电催化剂的制备及析氧性能研究[J]. 燃料化学学报(中英文), 2022, 50(10): 1278-1287. doi: 10.19906/j.cnki.JFCT.2022032
引用本文: 孙家祺, 马自在, 周兵, 杨杰, 王孝广. 高效草酸镍钴双金属电催化剂的制备及析氧性能研究[J]. 燃料化学学报(中英文), 2022, 50(10): 1278-1287. doi: 10.19906/j.cnki.JFCT.2022032
SUN Jia-qi, MA Zi-zai, ZHOU Bing, YANG Jie, WANG Xiao-guang. Bimetallic nickel-cobalt oxalate as highly efficient electrocatalyst for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1278-1287. doi: 10.19906/j.cnki.JFCT.2022032
Citation: SUN Jia-qi, MA Zi-zai, ZHOU Bing, YANG Jie, WANG Xiao-guang. Bimetallic nickel-cobalt oxalate as highly efficient electrocatalyst for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, 2022, 50(10): 1278-1287. doi: 10.19906/j.cnki.JFCT.2022032

高效草酸镍钴双金属电催化剂的制备及析氧性能研究

doi: 10.19906/j.cnki.JFCT.2022032
基金项目: 国家自然科学基金(21878201,22008165)和山西省青年拔尖人才支持计划(第七批)资助。
详细信息
    通讯作者:

    Tel: 18735385327, E-mail: wangxiaoguang@tyut.edu.cn

  • 中图分类号: O646

Bimetallic nickel-cobalt oxalate as highly efficient electrocatalyst for oxygen evolution reaction

Funds: The project was supported by the National Natural Science Foundation of China (21878201, 22008165) and the 7th Youth Talent Support Program of Shanxi Province.
  • 摘要: 开发用于析氧反应(OER)的高性能非贵金属催化剂有望提高电解水制氢的效率,促进氢能的开发利用。本研究采用简便的一步溶剂热法在泡沫镍(NF)上原位生长NiC2O4-Co(草酸镍钴)双金属电催化剂,可应用于高效的析氧反应。在1 mol/L KOH溶液中,自支撑NiC2O4-Co1双金属催化剂在10 mA/cm2下的析氧过电位仅为278 mV,塔菲尔斜率为65 mV/dec,并显现出优异稳定的OER性能。NiC2O4-Co双金属催化剂优异的性能归因于优化的电子结构,增大的比表面积,快速的界面电荷转移能力,以及OER过程中Ni位点和Co位点之间的协同效应。
  • FIG. 1925.  FIG. 1925.

    FIG. 1925.  FIG. 1925.

    图  1  NiC2O4、NiC2O4-Co0.5、NiC2O4-Co1和NiC2O4-Co2的XRD谱图

    Figure  1  XRD patterns of NiC2O4, NiC2O4-Co0.5, NiC2O4-Co1 and NiC2O4-Co2

    图  2  (a1)−(a2)NiC2O4、(b1)−(b2)NiC2O4-Co0.5、(c1)−(c2)NiC2O4-Co1和(d1)−(d2)NiC2O4-Co2的SEM照片

    Figure  2  SEM images of (a1)–(a2) NiC2O4, (b1)–(b2) NiC2O4-Co0.5, (c1)–(c2) NiC2O4-Co1 and (d1)–(d2) NiC2O4-Co2

    图  3  NiC2O4-Co1的(a)TEM照片、(b)图(a)标记区域的放大图、(c)高倍TEM照片、(d)SAED谱图、(e)STEM照片和(f)–(h)Ni、Co、O元素的面扫谱图

    Figure  3  (a) TEM image, (b) marked area in (a), (c) HRTEM image, (d) SAED pattern, (e) STEM image and (f)–(h) elemental mappings of Ni, Co and O of NiC2O4-Co1

    图  4  NiC2O4和NiC2O4-Co1的XPS谱图

    Figure  4  XPS spectra of NiC2O4 and NiC2O4-Co1 (a): survey scan; (b): Ni 2p; (c): Co 2p; (d): O 1s

    图  5  NiC2O4、NiC2O4-Co0.5、NiC2O4-Co1和NiC2O4-Co2电极的(a)LSV极化曲线,(b)Tafel曲线,(c)电化学阻抗图谱(0.65 V vs. Hg/HgO,插图是等效电路图),(d)NiC2O4-Co0.5和NiC2O4-Co1在50 mA/cm2下极化18 h的电位-时间曲线

    Figure  5  (a) LSV curves, (b) Tafel plots and (c) Nyquist plots (recorded at 0.65 V vs. Hg/HgO, inset: the equivalent circuit model) of NiC2O4, NiC2O4-Co0.5, NiC2O4-Co1 and NiC2O4-Co2 electrodes, (d) Chronopotentiometric curves of NiC2O4-Co0.5 and NiC2O4-Co1 electrodes at 50 mA/cm2 for 18 h

    图  6  (a)−(d)NiC2O4、NiC2O4-Co0.5、NiC2O4-Co1和NiC2O4-Co2电极在不同扫描速率下的CV曲线,(e)电位窗口中间的电容电流与扫描速率的关系,(f)−(g)NiC2O4和NiC2O4-Co1的氮气吸附-脱附等温曲线,(h)−(i)NiC2O4和NiC2O4-Co1的孔径分布

    Figure  6  (a)−(d) CVs of NiC2O4, NiC2O4-Co0.5, NiC2O4-Co1 and NiC2O4-Co2 at different scan rates, (e) current density as a function of the scan rate for the different electrodes, (f)−(g) N2 adsorption-desorption isotherm of NiC2O4 and NiC2O4-Co1, (h)–(i) BJH adsorption pore size distribution of NiC2O4 and NiC2O4-Co1

    图  7  Pt // NiC2O4-Co1在1 mol/L KOH溶液中的(a)全水解极化曲线和(b)恒电流极化曲线

    Figure  7  (a) Polarization curves of Pt (−)//(+) NiC2O4-Co1 for overall water splitting, (b) chronopotentiometric curve of Pt (−)//(+) NiC2O4-Co1

    图  8  NiC2O4-Co1电极经过恒电流极化测试后的XPS谱图

    Figure  8  XPS spectra of NiC2O4-Co1, (a) survey scan, (b) Ni 2p, (c) Co 2p and (d) O 1s after 18 h chronopotentiometry

    表  1  NiC2O4-Co1催化剂和已报道的非贵金属基电催化剂的OER活性对比

    Table  1  Comparison of OER performance of NiC2O4-Co1 with other reported non–noble–metal electrocatalysts

    ElectrocatalystCurrent density / (mA·cm−2Overpotential / mVReference
    NiC2O4-Co1 10 278 this work
    Ni2Co-N 10 214 [30]
    NiFe LDH 10 195 [31]
    NiFe-LDH/C 50 234 [32]
    NiFeV-P 10 234 [33]
    Co1.8Ni LDH 10 290 [34]
    Co-NiMoN-400 NR 10 294 [35]
    Co3O4/NC-350 10 298 [36]
    Ni2/3Fe1/3Al 10 299 [37]
    CoFeS/CNT 10 300 [38]
    Ni1.5Co1.5P/MFs 10 314 [39]
    下载: 导出CSV
  • [1] ZHANG K, ZOU R. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges[J]. Small,2021,17(37):2100129. doi: 10.1002/smll.202100129
    [2] WANG H, CHEN J, LIN Y, WANG X, LI J, LI Y, GAO L, ZHANG L, CHAO D, XIAO X, LEE J M. Electronic modulation of Non-van der waals 2D electrocatalysts for efficient energy conversion[J]. Adv Mater,2021,33(26):2008422. doi: 10.1002/adma.202008422
    [3] LIANG C, ZOU P, NAIRAN A, ZHANG Y, LIU J, LIU K, HU S, KANG F, FAN H J, YANG C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting[J]. Energy Environ Sci,2020,13(1):86−95. doi: 10.1039/C9EE02388G
    [4] 万磊, 史春薇, 余宗宝, 武宏大, 肖伟, 耿忠兴, 任铁强, 杨占旭. WS2/C复合材料的制备及其电催化析氢性能研究[J]. 燃料化学学报,2021,49(9):1362−1370. doi: 10.1016/S1872-5813(21)60078-6

    WAN Lei, SHI Chun-wei, YU Zong-bao, WU Hong-da, XIAO Wei, GENG Zhong-xing, REN Tie-qiang, YANG Zhan-xu. Preparation of WS2/C composite material and its electrocatalytic hydrogen evolution performance[J]. J Fuel Chem Technol,2021,49(9):1362−1370. doi: 10.1016/S1872-5813(21)60078-6
    [5] CAI X, LIN R, XU J, LU Y. Construction and analysis of photovoltaic directly coupled conditions in PEM electrolyzer[J]. Int J Hydrogen Energy,2022,47(10):6494−6507. doi: 10.1016/j.ijhydene.2021.12.017
    [6] 梁珂明, 姜彬, 黄焱, 鲁萌萌, 王秋静. 碳纳米纤维负载铁钴镍硼化物可控制备及其电催化析氢性能研究[J]. 燃料化学学报,2020,48(10):1270−1280. doi: 10.3969/j.issn.0253-2409.2020.10.014

    LIANG Ke-ming, JIANG Bin, HUANG Yan, LU Meng-meng, WANG Qiu-jing. Controllable synthesis of carbon nanofibers with plated FeCoNiB as high performance composite catalysts for electrocatalytic hydrogen evolution[J]. J Fuel Chem Technol,2020,48(10):1270−1280. doi: 10.3969/j.issn.0253-2409.2020.10.014
    [7] ZHOU J, HAN Z, WANG X, GAI H, CHEN Z, GUO T, HOU X, XU L, HU X, HUANG M, LEVCHENKO S V, JIANG H. Discovery of quantitative electronic structure‐OER activity relationship in metal‐organic framework electrocatalysts using an integrated theoretical‐experimental approach[J]. Adv Funct Mater,2021,31(33):2102066. doi: 10.1002/adfm.202102066
    [8] 彭学刚, 李晓东, 崔丽萍, 高志华, 黄伟, 左志军. 高效析氧反应催化剂Fe-MIL-101的制备及性能研究[J]. 燃料化学学报,2021,49(9):1354−1361. doi: 10.1016/S1872-5813(21)60072-5

    PENG Xue-gang, LI Xiao-dong, CUI Li-ping, GAO Zhi-hua, HUANG Wei, ZUO Zhi-jun. Preparation and investigation of Fe-MIL-101 as efficient catalysts for oxygen evolution reaction[J]. J Fuel Chem Technol,2021,49(9):1354−1361. doi: 10.1016/S1872-5813(21)60072-5
    [9] LEMOINE K, GOHARI-BAJESTANI Z, MOURY R, TERRY A, GUIET A, GRENèCHE J M, HéMON-RIBAUD A, HEIDARY N, MAISONNEUVE V, KORNIENKO N, LHOSTE J. Amorphous iron-manganese oxyfluorides, promising catalysts for oxygen evolution reaction under acidic media[J]. ACS Appl Energy Mater,2021,4(2):1173−1181. doi: 10.1021/acsaem.0c02417
    [10] PARIS A R, BOCARSLY A B. High-efficiency conversion of CO2 to oxalate in water is possible using a Cr-Ga oxide electrocatalyst[J]. ACS Catal,2019,9(3):2324−2333. doi: 10.1021/acscatal.8b04327
    [11] MOTA-LIMA A. The electrified plasma/liquid Interface as a platform for highly efficient CO2 electroreduction to oxalate[J]. J Phys Chem C,2020,124(20):10907−10915. doi: 10.1021/acs.jpcc.0c00099
    [12] KIM J W, LEE J K, PHIHUSUT D, YI Y, LEE H J, LEE J. Self-organized one-dimensional cobalt compound nanostructures from CoC2O4 for superior oxygen evolution reaction[J]. J Phys Chem C,2013,117(45):23712−23715. doi: 10.1021/jp407156d
    [13] LIU X, JIANG J, AI L. Non-precious cobalt oxalate microstructures as highly efficient electrocatalysts for oxygen evolution reaction[J]. J Mater Chem A,2015,3(18):9707−9713. doi: 10.1039/C5TA01012H
    [14] CHEN H, LIANG X, LIU Y, AI X, ASEFA T, ZOU X. Active site engineering in porous electrocatalysts[J]. Adv Mater,2020,32(44):2002435. doi: 10.1002/adma.202002435
    [15] YU J, YU F, YUEN M F, WANG C. Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution[J]. J Mater Chem A,2021,9(15):9389−9430. doi: 10.1039/D0TA11910E
    [16] HU H X, LEI X, LI S M, PENG R Z, WANG J L. Rapid mass production of iron nickel oxalate nanorods for efficient oxygen evolution reaction catalysis[J]. New J Chem,2022,46(1):328−333. doi: 10.1039/D1NJ04668C
    [17] GHOSH S, INTA H R, GANGULI S, TUDU G, KOPPISETTI H V, MAHALINGAM V. MoO2 as a propitious “Pore-Forming Additive” for boosting the water oxidation activity of cobalt oxalate microrods[J]. J Phys Chem C,2020,124(37):20010−20020. doi: 10.1021/acs.jpcc.0c05787
    [18] GHOSH S, JANA R, GANGULI S, INTA H R, TUDU G, KOPPISETTI H V, DATTA A, MAHALINGAM V. Nickel-cobalt oxalate as an efficient non-precious electrocatalyst for an improved alkaline oxygen evolution reaction[J]. Nanoscale Adv,2021,3(13):3770−3779. doi: 10.1039/D1NA00034A
    [19] YANG H, DRIESS M, MENEZES P W. Self‐supported electrocatalysts for practical water electrolysis[J]. Adv Energy Mater,2021,11(39):2102074. doi: 10.1002/aenm.202102074
    [20] SINGH M, NGUYEN T T, BALAMURUGAN J, KIM N H, LEE J H. Rational manipulation of 3D hierarchical oxygenated nickel tungsten selenide nanosheet as the efficient bifunctional electrocatalyst for overall water splitting[J]. Chem Eng J,2022,430:132888. doi: 10.1016/j.cej.2021.132888
    [21] KALE M B, BORSE R A, GOMAA ABDELKADER MOHAMED A, WANG Y. Electrocatalysts by electrodeposition: Recent advances, synthesis methods, and applications in energy conversion[J]. Adv Funct Mater,2021,31(25):2101313. doi: 10.1002/adfm.202101313
    [22] XIONG D, GU M, CHEN C, LU C, YI F Y, MA X. Rational design of bimetallic metal-organic framework composites and their derived sulfides with superior electrochemical performance to remarkably boost oxygen evolution and supercapacitors[J]. Chem Eng J,2021,404:127111. doi: 10.1016/j.cej.2020.127111
    [23] XU Y, LIU M, WANG S, REN K, WANG M, WANG Z, LI X, WANG L, WANG H. Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays[J]. Appl Catal B: Environ,2021,298:120493. doi: 10.1016/j.apcatb.2021.120493
    [24] BU X, WEI R, CAI Z, QUAN Q, ZHANG H, WANG W, LI F, YIP S P, MENG Y, CHAN K S, WANG X, HO J C. More than physical support: The effect of nickel foam corrosion on electrocatalytic performance[J]. Appl Surf Sci,2021,538:147977. doi: 10.1016/j.apsusc.2020.147977
    [25] MENG T, LI Q, YAN M, WANG D, FAN L, LIU X, XING Z, YANG X. Electrochemically induced in-situ surface self-reconstruction on Ni, Fe, Zn ternary-metal hydroxides towards the oxygen-evolution performance[J]. Chem Eng J,2021,410:128331. doi: 10.1016/j.cej.2020.128331
    [26] TSAI F T, DENG Y T, PAO C W, CHEN J L, LEE J F, LAI K T, LIAW W F. The HER/OER mechanistic study of an FeCoNi-based electrocatalyst for alkaline water splitting[J]. J Mater Chem A,2020,8(19):9939−9950. doi: 10.1039/D0TA01877E
    [27] TAO L, HUANG M, GUO S, WANG Q, LI M, XIAO X, CAO G, SHAO Y, SHEN Y, FU Y, WANG M. Surface modification of NiCo2Te4 nanoclusters: a highly efficient electrocatalyst for overall water-splitting in neutral solution[J]. Appl Catal B: Environ,2019,254:424−431. doi: 10.1016/j.apcatb.2019.05.010
    [28] LEI C, ZHENG Q, CHENG F, HOU Y, YANG B, LI Z, WEN Z, LEI L, CHAI G, FENG X. High‐performance metal‐free nanosheets array electrocatalyst for oxygen evolution reaction in acid[J]. Adv Funct Mater,2020,30(31):2003000. doi: 10.1002/adfm.202003000
    [29] KIM C, LEE S, KIM S H, KWON I, PARK J, KIM S, LEE J H, PARK Y S, KIM Y. Promoting electrocatalytic overall water splitting by sulfur incorporation into CoFe-(oxy)hydroxide[J]. Nanoscale Adv,2021,3(22):6386−6394. doi: 10.1039/D1NA00486G
    [30] GAO X, YU Y, LIANG Q, PANG Y, MIAO L, LIU X, KOU Z, HE J, PENNYCOOK S J, MU S, WANG J. Surface nitridation of nickel-cobalt alloy nanocactoids raises the performance of water oxidation and splitting[J]. Appl Catal B: Environ,2020,270:118889. doi: 10.1016/j.apcatb.2020.118889
    [31] CAI Z, ZHOU D, WANG M, BAK S M, WU Y, WU Z, TIAN Y, XIONG X, LI Y, LIU W, SIAHROSTAMI S, KUANG Y, YANG X Q, DUAN H, FENG Z, WANG H, SUN X. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity[J]. Angew Chem Int Ed,2018,57(30):9392−9396. doi: 10.1002/anie.201804881
    [32] ZHANG Z, WANG C, MA X, LIU F, XIAO H, ZHANG J, LIN Z, HAO Z. Engineering ultrafine NiFe-LDH into self-supporting nanosheets: Separation-and-reunion strategy to expose additional edge sites for oxygen evolution[J]. Small,2021,17(47):2103785. doi: 10.1002/smll.202103785
    [33] JEUNG Y, JUNG H, KIM D, ROH H, LIM C, HAN J W, YONG K. 2D-structured V-doped Ni(Co, Fe) phosphides with enhanced charge transfer and reactive sites for highly efficient overall water splitting electrocatalysts[J]. J Mater Chem A,2021,9(20):12203−12213. doi: 10.1039/D1TA02149D
    [34] HU W, LIU Q, LV T, ZHOU F, ZHONG Y. Impact of interfacial CoOOH on OER catalytic activities and electrochemical behaviors of bimetallic CoxNi-LDH nanosheet catalysts[J]. Electrochim Acta,2021,381:138276−138286. doi: 10.1016/j.electacta.2021.138276
    [35] YIN Z, SUN Y, JIANG Y, YAN F, ZHU C, CHEN Y. Hierarchical cobalt-doped molybdenum-nickel nitride nanowires as multifunctional electrocatalysts[J]. ACS Appl Mater Interfaces,2019,11(31):27751−27759. doi: 10.1021/acsami.9b06543
    [36] ZHANG J, QIAN B, SUN S, TAO S, CHU W, WU D, SONG L. Ultrafine Co3O4 nanoparticles within nitrogen-doped carbon matrix Derived from metal-organic complex for boosting lithium storage and oxygen evolution reaction[J]. Small,2019,15(46):1904260. doi: 10.1002/smll.201904260
    [37] BAI Z, WANG P, CHEN X, CHEN P, LIANG C. In situ surface dealumination of intermetallic NiFe aluminides electrocatalysts for enhancing the oxygen evolution[J]. Int J Hydrog Energy,2021,46(7):5323−5331. doi: 10.1016/j.ijhydene.2020.11.062
    [38] HUANG L, WU H, LIU H, ZHANG Y. Phosphorous doped cobalt-iron sulfide/carbon nanotube as active and robust electrocatalysts for water splitting[J]. Electrochim Acta,2019,318:892−900. doi: 10.1016/j.electacta.2019.06.096
    [39] CHEN T, QIAN M, TONG X, LIAO W, FU Y, DAI H, YANG Q. Nanosheet self-assembled NiCoP microflowers as efficient bifunctional catalysts (HER and OER) in alkaline medium[J]. Int J Hydrog Energy,2021,46(58):29889−29895. doi: 10.1016/j.ijhydene.2021.06.121
    [40] AO K, LI D, YAO Y, LV P, CAI Y, WEI Q. Fe-doped Co9S8 nanosheets on carbon fiber cloth as pH-universal freestanding electrocatalysts for efficient hydrogen evolution[J]. Electrochim Acta,2018,264:157−165. doi: 10.1016/j.electacta.2018.01.080
    [41] RAJENDIRAN R, MUTHUCHAMY N, PARK K H, LI O L, KIM H J, PRABAKAR K. Self-assembled 3D hierarchical MnCO3/NiFe layered double hydroxides as a superior electrocatalysts for the oxygen evolution reactions[J]. J Colloid Interface Sci,2020,566:224−233. doi: 10.1016/j.jcis.2020.01.086
    [42] YAO N, FAN Z, XIA Z, WU F, ZHAO P, CHENG G, LUO W. Constructing the CoO/Co4N heterostructure with an optimized electronic structure to boost alkaline hydrogen evolution electrocatalysis[J]. J Mater Chem A,2021,9(34):18208−18212. doi: 10.1039/D1TA04691H
    [43] QIN Q, CHEN L, WEI T, LIU X. MoS2/NiS yolk-shell microsphere-based electrodes for overall water splitting and asymmetric supercapacitor[J]. Small,2019,15(29):1803639. doi: 10.1002/smll.201803639
    [44] REIKOWSKI F, MAROUN F, PACHECO I, WIEGMANN T, ALLONGUE P, STETTNER J, MAGNUSSEN O M. Operando surface X-ray diffraction studies of structurally defined Co3O4 and CoOOH thin films during oxygen evolution[J]. ACS Catal,2019,9(5):3811−3821. doi: 10.1021/acscatal.8b04823
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  773
  • HTML全文浏览量:  300
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-04
  • 修回日期:  2022-03-27
  • 录用日期:  2022-04-07
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回