留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu(I)NH4Y吸附剂的制备及其乙烯/乙烷吸附分离性能

李冠泓 王焕 曹利 星 赵静 李强 张晓欣 秦玉才 宋丽娟

李冠泓, 王焕, 曹利 星, 赵静, 李强, 张晓欣, 秦玉才, 宋丽娟. Cu(I)NH4Y吸附剂的制备及其乙烯/乙烷吸附分离性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022039
引用本文: 李冠泓, 王焕, 曹利 星, 赵静, 李强, 张晓欣, 秦玉才, 宋丽娟. Cu(I)NH4Y吸附剂的制备及其乙烯/乙烷吸附分离性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022039
LI Guan-hong, WANG Huan, CAO Li-xing, ZHAO Jing, LI Qiang, ZHANG Xiao-xin, QIN Yu-cai, SONG Li-juan. Preparation of Cu(I)NH4Y zeolite for Adsorption and Separation of Ethylene and Ethane[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022039
Citation: LI Guan-hong, WANG Huan, CAO Li-xing, ZHAO Jing, LI Qiang, ZHANG Xiao-xin, QIN Yu-cai, SONG Li-juan. Preparation of Cu(I)NH4Y zeolite for Adsorption and Separation of Ethylene and Ethane[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022039

Cu(I)NH4Y吸附剂的制备及其乙烯/乙烷吸附分离性能

doi: 10.19906/j.cnki.JFCT.2022039
基金项目: 辽宁省自然科学基金计划(2020-MS-284);国家自然科学基金项目(21902068).
详细信息
    通讯作者:

    Tel:15841344639,E-mail:qinyucai@lnpu.edu.cn

  • 中图分类号: TE624

Preparation of Cu(I)NH4Y zeolite for Adsorption and Separation of Ethylene and Ethane

Funds: The project was supported by the Natural Science Foundation of Liaoning(2020-MS-284),the National Natural Science Foundation of China(21902068).
  • 摘要: 选择性吸附分离技术是目前最有希望替代能耗巨大的乙烯/乙烷深冷分离工艺的手段,其核心是高效的乙烯吸附剂的开发。本文采用液相离子交换法,用不同浓度的CuCl2对NH4Y分子筛进行离子交换制得系列CuNH4Y-x分子筛吸附剂,并通过固定床吸附穿透实验及一系列表征手段探究了Cu的价态和负载量对乙烯/乙烷吸附分离性能的影响。吸附穿透实验结果表明Cu(I)NH4Y0.1的乙烯吸附量明显高于Cu(II)NH4Y0.1,且Cu(I)NH4Y系列吸附剂的乙烯吸附量随着Cu负载量的增加呈现先增加后减小的趋势。H2-TPR和HRTEM表明,当Cu的负载量较低时,高度分散落位于Y分子筛超笼中的Cu(I)物种是乙烯有效吸附位点。然而,当Cu的负载量较高时,部分Cu物种发生团聚,造成对乙烯吸附能力的减弱。DFT密度泛函理论计算表明相比于Cu(II)NH4Y吸附剂,乙烯更容易吸附在Cu(I)NH4Y吸附剂上。该研究结果可为乙烯分离用高效Cu离子改性分子筛吸附剂的开发提供重要理论依据与指导。
  • 图  1  Cu(I)NH4Y0.1和Cu(II)NH4Y0.1分子筛吸附剂上乙烯乙烷的穿透曲线。(实心符号为乙烯穿透曲线,空心符号为乙烷穿透曲线)

    Figure  1  Adsorption breakthrough curves of ethylene ethane on Cu(I)NH4Y0.1 and Cu(II)NH4Y0.1 zeolite. (the solid symbol for ethylene breakthrough curves and the hollow symbol for ethane breakthrough curves)

    图  2  乙烯(a−c)/乙烷(d−f)在三种吸附剂上的吸附结构和吸附能

    Figure  2  Adsorption structure and adsorption energy of ethylene and ethane on three adsorbents

    图  3  NH4Y和四种Cu(II)NH4Y吸附剂原位红外光谱图

    Figure  3  The in situ infrared spectra of NH4Y and four Cu(II)NH4Y adsorbents

    图  4  NH4Y和四种Cu(I)NH4Y吸附剂上乙烯和乙烷的吸附穿透曲线(实心符号为乙烯穿透曲线,空心符号为乙烷穿透曲线)

    Figure  4  Adsorption breakthrough curves of ethylene and ethane on NH4Y and four Cu(I)NH4Y adsorbents

    (the solid symbol for ethylene breakthrough curves and the hollow symbol for ethane breakthrough curves)

    图  5  NH4Y和四种Cu(I)NH4Y吸附剂的乙烯穿透吸附量和乙烯/乙烷选择性

    Figure  5  Ethylene breakthrough adsorption capacity and ethylene / ethane selectivity of NH4Y and four Cu(I)NH4Y adsorbents

    图  6  NH4Y和四种Cu(II)NH4Y吸附剂的XRD谱图

    Figure  6  XRD spectra of NH4Y and four Cu(II)NH4Y adsorbents

    图  7  四种Cu(II)NH4Y吸附剂的氢气程序升温还原(H2-TPR)谱图

    Figure  7  Hydrogen temperature programmed reduction (H2-TPR) spectra of four Cu(II)NH4Y adsorbents

    图  8  三种Cu(I)NH4Y吸附剂的HRTEM图

    Figure  8  HRTEM diagram of three Cu(I)NH4Y adsorbents

    表  1  NH4Y和Cu(II)NH4Y分子筛的元素比及氨含量

    Table  1  Element ratio and ammonia content of NH4Y and Cu(II)NH4Y zeolites

    SampleSi/AlCu/Alammonia content a (%)
    NH4Y2.690100
    Cu(II)NH4Y0.012.680.07656.6
    Cu(II)NH4Y0.052.670.16517.5
    Cu(II)NH4Y0.12.680.17814.8
    Cu(II)NH4Y0.152.670.19111.4
    a: ammonia content is measured by in situ infrared spectroscopy
    下载: 导出CSV

    表  2  Cu(II)NH4Y分子筛吸附剂的孔结构参数

    Table  2  Pore structure parameters of Cu(II)NH4Y adsorbent

    SampleSBET a (m2·g−1)Smicrob (m2·g−1)Vmicroc (cm3·g−1)Vmesod (cm3·g−1)
    NH4Y485.6436.50.210.08
    Cu(II)NH4Y0.01530.3477.20.270.07
    Cu(II)NH4Y0.05537.4486.40.280.06
    Cu(II)NH4Y0.1528.1471.90.270.06
    Cu(II)NH4Y0.15532.7479.50.270.07
    a: BET surface area, b: micropore surface area, c: micropore pore volume, d: mesoporous pore volume
    下载: 导出CSV
  • [1] LI L B, LIN R B, KRISHNA R, LI H, XIANG S C, WU H, LI J P, ZHOU W, CHEN B L. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites[J]. Science,2018,362(6413):443−446. doi: 10.1126/science.aat0586
    [2] AKAH A, WILLIAMS J, GHRAMI M. An overview of light olefins production via steam enhanced catalytic cracking[J]. Catal Tal Surv Asia,2019,23(4):265−276. doi: 10.1007/s10563-019-09280-6
    [3] AMGHIZAR I, VANDEWALLE L A, VAN GEEM K M, GEEM V, MARIN G B. New trends in olefin production[J]. Engineering,2017,3(2):171−178. doi: 10.1016/J.ENG.2017.02.006
    [4] ZHU H B, DONG H L, LAVEILLE P, SAIH Y, CAPS V, BASSET J M. Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene[J]. Catal Today,2014,228:58−64. doi: 10.1016/j.cattod.2013.11.061
    [5] SHOLL D S, LIVELY R P. Seven chemical separations to change the world[J]. Nature,2016,532(7600):435−437. doi: 10.1038/532435a
    [6] LIU Y Z, WU Y, LIANG W W, PENG J J, LI Z, WANG H H, JANIK M J, XIAO J. Bimetallic ions regulate pore size and chemistry of zeolites for selective adsorption of ethylene from ethane[J]. Chem Eng Sci,2020,220:115636. doi: 10.1016/j.ces.2020.115636
    [7] 崔希利, 邢华斌. 金属有机框架材料分离低碳烃的研究进展[J]. 化工学报,2018,69(6):2339−2352.

    CUI X L, XING H B. Separation of light hydrocarbons with metal-organic frameworks[J]. CIESC Journal,2018,69(6):2339−2352.
    [8] 马士珍, 苏宝根, 鲍宗必, 苏云, 杨亦文, 任其龙. 干气中烷烃、烯烃新型分离吸附剂的研究进展[J]. 化工学报,2014,65(2):396−405. doi: 10.3969/j.issn.0438-1157.2014.02.005

    MA S Z, SU B G, BAO Z B, SU Y, YANG Y W, REN Q L. Advances in new type adsorbent for separating alkene from dry gas[J]. CIESC Journal,2014,65(2):396−405. doi: 10.3969/j.issn.0438-1157.2014.02.005
    [9] BANERJEE D, LIU J, THALLAPALLY P K. Separation of C2 hydrocarbons by porous materials: metal organic frameworks as platform[J]. Comments Inorg Chem,2015,35(1):18−38. doi: 10.1080/02603594.2014.976704
    [10] SAFARIK D J, ELDREDGE R B. Olefin/paraffin separations by reactive absorption: a review[J]. Ind Eng Chem Res,1998,37(7):2571−2581. doi: 10.1021/ie970897h
    [11] MIN J G, KEMP K C, HONG S B. Silver ZK-5 zeolites for selective ethylene/ethane separation[J]. Sep Purif Technol,2020,250:117146. doi: 10.1016/j.seppur.2020.117146
    [12] SOLANKI V A, BORAH B. In-silico identification of adsorbent for separation of ethane/ethylene mixture[J]. J Mol Model,2021,64(4):666−672.
    [13] JIANG W J, SUN L B, YIN Y, SONG X L, LIU X Q. Ordered mesoporous carbon CMK-3 modified with Cu (I) for selective ethylene/ethane adsorption[J]. Sep Sci Technol,2013,48(6):968−976. doi: 10.1080/01496395.2012.712600
    [14] CHEN L, LIU X Q. π-Complexation mesoporous adsorbents Cu-MCM-48 for ethylene-ethane separation[J]. Chin J Chem Eng,2008,16(4):570−574. doi: 10.1016/S1004-9541(08)60123-8
    [15] GOLIPOUR H, MOKHTARANI B, MAFI M, MORADI A, GODINI H R. Experimental measurement for adsorption of ethylene and ethane gases on copper-exchanged zeolites 13X and 5A[J]. J Chem Eng Data,2020,65(8):3920−3932. doi: 10.1021/acs.jced.0c00251
    [16] LI Y X, SHEN J X, PENG S S, ZHANG J K, WU J, LIU X Q, SUN L B. Enhancing oxidation resistance of Cu (I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization[J]. Nat commun,2020,11(1):1−9. doi: 10.1038/s41467-019-13993-7
    [17] 丁润东, 祖运, 周传行, 王焕, 莫周胜, 秦玉才, 孙兆林, 宋丽娟. CuNaY分子筛的有效吸附位与其脱硫性能的关联性研究[J]. 燃料化学学报,2018,46(4):451−458. doi: 10.3969/j.issn.0253-2409.2018.04.010

    DING R D, ZU Y, ZHOU C H, WANG H, MO Z S, QIN Y C, SUN Z L, SONG L J. Insight into the correlation between the effective adsorption sites and adsorption desulfurization performance of CuNaY zeolite[J]. J Fuel Chem Technol,2018,46(4):451−458. doi: 10.3969/j.issn.0253-2409.2018.04.010
    [18] ZU Y, WANG S H, HUI Y, NI N, ZHANG X T, QIN Y C, ZHANG L, LIU H H, GAO X H, SONG L J. Facile fabrication of a superior Cu(I)-NH4Y zeolite adsorbent for improving thiophene adsorption selectivity in the presence of aromatics or olefins[J]. Chem Eng J,2020,401:126112. doi: 10.1016/j.cej.2020.126112
    [19] ZU Y, GUO Z S, ZHENG J, HUI Y, WANG S H, QIN Y C, ZHANG L, LIU H H, GAO X H, SONG L J. Investigation of Cu(I)-Y zeolites with different Cu/Al ratios towards the ultra-deep adsorption desulfurization: Discrimination and role of the specific adsorption active sites[J]. Chem Eng J,2020,380:122319. doi: 10.1016/j.cej.2019.122319
    [20] SUZUKI K, KATADA N, NIWA M. Detection and quantitative measurements of four kinds of OH in HY zeolite[J]. J Phys Chem C,2007,111(2):894−900. doi: 10.1021/jp065054v
    [21] SHY D S, CHEN S H, LIEVENS J, LIU S B, CHAO K J. Distribution of cations in lanthanum-exchanged NaY zeolites[J]. J Chem Soc, Faraday Transactions,1991,87(17):2855−2859. doi: 10.1039/ft9918702855
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  9
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-07
  • 修回日期:  2022-04-27
  • 网络出版日期:  2022-05-16

目录

    /

    返回文章
    返回