留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实验和密度泛函理论的NaHCO3吸附SeO2机理研究

李岩松 邓双 胡红云 董璐 黄永达 邹潺 吴诗勇

李岩松, 邓双, 胡红云, 董璐, 黄永达, 邹潺, 吴诗勇. 基于实验和密度泛函理论的NaHCO3吸附SeO2机理研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022040
引用本文: 李岩松, 邓双, 胡红云, 董璐, 黄永达, 邹潺, 吴诗勇. 基于实验和密度泛函理论的NaHCO3吸附SeO2机理研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022040
LI Yan–song, DENG Shuang, HU Hong–yun, DONG Lu, HUANG Yong–da, ZOU Chan, WU Shi–yong. Study on the mechanism of SeO2 adsorption by NaHCO3 based on experiment and density functional theory[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022040
Citation: LI Yan–song, DENG Shuang, HU Hong–yun, DONG Lu, HUANG Yong–da, ZOU Chan, WU Shi–yong. Study on the mechanism of SeO2 adsorption by NaHCO3 based on experiment and density functional theory[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022040

基于实验和密度泛函理论的NaHCO3吸附SeO2机理研究

doi: 10.19906/j.cnki.JFCT.2022040
基金项目: 湖北省重点研发计划项目 (2021BCA157) ,内蒙古自治区重点研发计划项目(2020ZD0013)和宁夏回族自治区重点研发计划项目(2021BEG02001)资助.
详细信息
    通讯作者:

    Tel:13524019769,Email:wsy@ecust.edu.cn

  • 中图分类号: R122.7;TQ125.2

Study on the mechanism of SeO2 adsorption by NaHCO3 based on experiment and density functional theory

Funds: The project was supported by the Key R&D Program Project of Hubei Province (2021BCA157) , the Key R&D Program Project of Inner Mongolia Autonomous Region(2020ZD0013)and the Key R&D Program Project of Ningxia Hui Autonomous Region(2021BEG02001).
  • 摘要: NaHCO3是一种高效的烟气脱酸剂,但脱酸过程中NaHCO3对于SeO2的吸附效果及机理尚不明确。本文通过吸附实验探究了140−220 ℃下NaHCO3对SeO2的吸附性能,通过一系列表征解析了吸附后的样品中硒的总量、价态和形态,结合密度泛函理论计算,探讨了NaHCO3对SeO2的吸附机理。结果表明,NaHCO3对SeO2的吸附性能随温度的升高而增加,在吸附过程中同时发生NaHCO3向Na2CO3的分解反应,分解后产生的Na2CO3吸附活性更强。SeO2吸附过程属于SeO2中Se原子与Na2CO3表面O原子成键的化学吸附,吸附产物以亚硒酸盐为主。
  • 图  1  吸附实验装置示意图

    Figure  1  Schematic diagram of the adsorption experimental setup

    图  2  Na2CO3原胞和Na2CO3(001)模型(红色:O;灰色:C;紫色:Na)

    Figure  2  Na2CO3 proto–cell and Na2CO3(001) models(Red: O; Gray: C; Purple: Na)

    图  3  不同温度下NaHCO3对SeO2的吸附量

    Figure  3  Adsorption capacity of NaHCO3 on SeO2 at different temperatures

    图  4  NaHCO3的热重曲线

    Figure  4  Thermogravimetric curve of NaHCO3

    图  5  热分解前后对SeO2的吸附能力

    Figure  5  Adsorption capacity for SeO2 before and after thermal decomposition

    图  6  热分解前后NaHCO3的SEM图像(a:放大倍数500倍的NaHCO3;b:放大倍数5000倍的NaHCO3;c:放大倍数500倍的热分解后的Na2CO3;d :放大倍数5000倍的热分解后的Na2CO3

    Figure  6  SEM images of NaHCO3 before and after thermal decomposition(a : NaHCO3 at a magnification of 500 times; b : NaHCO3 at a magnification of 5000 times; c: Na2CO3 after thermal decomposition at a magnification of 500 times; d : Na2CO3 after thermal decomposition at a magnification of 5000 times)

    图  7  NaHCO3和Na2CO3吸附SeO2的热力学计算

    Figure  7  Thermodynamic calculations of SeO2 adsorption by NaHCO3 and Na2CO3

    图  8  吸附产物中Se的形态及价态分布

    Figure  8  Morphology and valence distribution of Se in adsorption products

    图  9  SeO2在Na2CO3(001)表面吸附的电荷密度分布(红色:O;灰色:C;紫色:Na;橙色:Se;蓝色区域:得电子,红色区域:失电子)

    Figure  9  Charge density distribution of SeO2 adsorbed on the surface of Na2CO3 (001) (Red: O; Gray: C; Purple: Na; Orange: Se; Blue area: gain electrons, Red area: lose electrons)

    图  10  SeO2和Na2CO3(001)表面的PDOS光谱 (a)吸附前SeO2的Se原子;(b)吸附后Na2CO3–SeO2的Se原子;(c)吸附前Na2CO3(001)表面的Osurf原子;(d)吸附后接近Se的Osurf原子

    Figure  10  The PDOS spectras of SeO2 and Na2CO3(001) surface (a) Se atom of SeO2 before adsorption; (b) Se atom of Na2CO3–SeO2 after adsorption; (c) Osurf atom of Na2CO3(001) surface before adsorption; (d) Osurf atom close to Se after adsorption

    表  1  比表面积及孔分析

    Table  1  Specific surface area and pore analysis

    SamplesSpecific surface
    area /m2·g−1
    Aperture /nmHole volume /cm3·g−1
    NaHCO30.18315.65307.156*10−4
    NaHCO3–1401.66713.72485.720*10−3
    NaHCO3–1803.33113.06941.088*10−2
    NaHCO3–2203.83110.21961.232*10−2
    下载: 导出CSV

    表  2  SeO2在Na2CO3(001)表面的吸附构型及吸附能(红色:O;灰色:C;紫色:Na;橙色:Se)

    Table  2  Adsorption configuration of SeO2 on the surface of Na2CO3(001) and adsorption energy (Red: O; Gray: C; Purple: Na; Orange: Se)

    PlacementAdsorption configurationEads/ kJ·mol−1
    Main viewTop view
    (a) Osurf top,Horizontal−127.529
    (b) Osurf top,Vertical−113.218
    (c) Vacancy,Horizontal−109.455
    (d) Vacancy,Vertical−99.035
    (e) Na top,Horizontal−87.553
    (f) Na top,Vertical−90.834
    下载: 导出CSV
  • [1] 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2021.

    National Bureau of Statistics of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021.
    [2] 孙向军, 陈德珍. 垃圾焚烧厂干法脱酸药剂的比较研究[J]. 环境卫生工程,2011,19(06):7−8+11.

    SUN Xiang–jun, CHEN De–zhen. Comparison of Dry–deacidification Reagents in Waste Incineration Plants[J]. Environ Sanit Eng,2011,19(06):7−8+11.
    [3] 谭增强, 牛国平, 吕晨峰, 侯炜, 丁嘉毅, 潘栋, 王晓冰. 3种高效中温脱酸剂脱酸活性实验[J]. 热力发电,2018,47(08):110−114.

    TAN Zeng–qiang, NIU Guo–feng, LV Chen–feng, HOU Wei, DING Jia–yi, PAN Dong, WANG Xiao–bing. Experimental research on activity of three effective medium–temperature deacidification solvents[J]. Therm Power Gener,2018,47(08):110−114.
    [4] WANG L, CHEN Q, JAMRO I A, LI R D, BALOCH H A. Accelerated co–precipitation of lead, zinc and copper by carbon dioxide bubbling in alkaline municipal solid waste incinerator (MSWI) fly ash wash water[J]. R Soc Chem Adv,2016,6(24):20173−20186.
    [5] 王月昶, 刘丽艳. 小苏打干法脱酸助力焚烧烟气超低排放[C] //2019中国环境科学学会科学技术年会论文集(第一卷). 西安: 中国环境科学出版社, 2019: 1023–1028.

    WANG Yue–chang, LIU LI–yan. Baking soda dry de–acidification to help incineration flue gas ultra–low emission[C] //. Proceedings of the 2019 Annual Scientific and Technical Conference of the Chinese Society of Environmental Science (Vol. 1). Xi'an: Chinese environmental science press , 2019: 1023–1028.
    [6] LIU H M, LI S, GUO G Z, GONG L F, ZHANG L Q, QIE Y N, HU H Y, YAO H. Ash formation and the inherent heavy metal partitioning behavior in a 100 t/d hazardous waste incineration plant[J]. Sci Total Environ,2022,814:151938. doi: 10.1016/j.scitotenv.2021.151938
    [7] 徐章. 城市生活垃圾焚烧飞灰中砷和硒的赋存形态研究[D]. 武汉: 华中科技大学, 2016.

    XU Zhang. The Study of Arsenic and Selenium Occurrence in Municipal Solid Waste Incineration Fly Ash[D]. Wu han: Huazhong University of Science and Technology, 2016.
    [8] 黄永达, 胡红云, 龚泓宇, 刘慧敏, 付彪, 李帅, 罗光前, 姚洪. 燃煤电厂砷、硒、铅的排放与控制技术研究进展[J]. 燃料化学学报,2020,48(11):1281−1297.

    HUANG Yong–da, HU Hong–yun, GONG Hong–yu, LIU Hui–min, FU Biao, LI Shuai, LUO Guang–qian, YAO Hong. Research progress on emission and control technologies of arsenic, selenium and lead in coal–fired power plants[J]. J Fuel Chem Technol,2020,48(11):1281−1297.
    [9] 韩健. 燃煤烟气中硒对SCR脱硝催化剂的影响研究[D]. 北京: 华北电力大学, 2020.

    HAN Jian. Research on Effects of Selenium in Coal–fired Flue Gas on SCR denitrification Catalyst[D]. Bei jing: North China Electric Power University , 2020.
    [10] 蓝柳恒. 二氧化硒生产过程职业病危害的预防及控制[J]. 中国卫生产业,2015,12(11):6−8.

    LAN Liu–heng. The Discussion for Assessment of Occupational Hazards on the Production of Selenium Oxide Two[J]. China Health Ind.,2015,12(11):6−8.
    [11] 于梦竹, 王海, 黄亚继, 朱志成, 樊聪慧, 董璐, 程好强. 典型钙/镁基吸附剂对二氧化硒吸附特性研究[J]. 燃料化学学报,2020,48(11):1335−1344.

    YU Meng–zhu, WANG Hai, HUANG Ya–ji, ZHU Zhi–cheng, FAN Cong–hui, DONG Lu, CHENG Hao–qiang. Characteristics of selenium capture by typical Ca– / Mg–based sorbents[J]. J Fuel Chem Technol,2020,48(11):1335−1344.
    [12] YUAN C L, ZHANG C, YU S H, XU H, LI X, FANG Q Y, CHEN G. Experimental and Density Functional Theory Study of the Adsorption Characteristics of CaO for SeO2 in Simulated Flue Gas and the Effect of CO2[J]. Energy Fuels,2020,34(9):10872−10881. doi: 10.1021/acs.energyfuels.0c02044
    [13] GHOSHDASTIDAR A, MAHULI S, AGNIHOTRI R, FAN L S. Selenium capture using sorbent powders: Mechanism of sorption by hydrated lime[J]. Environ Sci Technol,1996,30(2):447−452. doi: 10.1021/es950129m
    [14] FAN Y M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci,2017,420:465−471. doi: 10.1016/j.apsusc.2017.04.233
    [15] YUAN B, HU H Y, HUANG Y D, GUO G Z, GONG L F, ZOU C, DONG L, YAO H. Effect of hydrated lime on the migration behavior of selenium in the MSWI plants: Experimental and theoretical study[J]. Chem Eng J,2022,433:134603. doi: 10.1016/j.cej.2022.134603
    [16] MA T T, HUANG Y D, DENG S, FU B, LUO G Q, WANG J G, HU H Y, YUAN C G, YAO H. The relationship between selenium retention and fine particles removal during coal combustion[J]. Fuel,2020,265:116859. doi: 10.1016/j.fuel.2019.116859
    [17] 张晨鼎. 碳酸钠和碳酸氢钠及其复盐与水合物的晶体结构[J]. 纯碱工业,2010,(06):3−10.

    ZHANG Chen–ding. Crystal structures of sodium carbonate and sodium bicarbonate and their complex salts and hydrates[J]. Soda Ind,2010,(06):3−10.
    [18] 邹潺. 煤粉恒温燃烧砷的释放特性及转化迁移机理研究[D]. 北京: 华北电力大学, 2020.

    ZOU Chan. Volatilization characteristics, transformation and migration mechanism of arsenic during isothermal pulverized coal combustion[D]. Bei jing: North China Electric Power University , 2020.
    [19] 赵传文, 陈晓平, 赵长遂. 碳酸氢钠分解的热重分析研究[J]. 燃烧科学与技术,2009,15(02):135−140.

    ZHAO Chuan–wen, CHEN Xiao–ping, ZHAO Chang–sui. Thermogravimetric analysis study of sodium bicarbonate decomposition[J]. J Combust Sci Technol,2009,15(02):135−140.
    [20] RACLAVSKA H, MATYSEK D, RACLAVSKY K, JUCHELKOVA D. Geochemistry of fly ash from desulphurisation process performed by sodium bicarbonate[J]. Fuel Process Technol,2010,91(2):150−157. doi: 10.1016/j.fuproc.2009.09.004
    [21] MONFORT E, CELADES I, MESTRE S, BONO R, LLOP H, DE LA HOZ J M. Industrial–Scale Study of NaHCO3 Chemical Reactions with HF, HCl and SO2 in Kiln Flue Gases[J]. Key Energy Mater. 2001, 206–213: 855–858.
    [22] GRIECO E, POGGIO A. Simulation of the influence of flue gas cleaning system on the energetic efficiency of a waste–to–energy plant[J]. Appl Energy,2009,86(9):1517−1523. doi: 10.1016/j.apenergy.2008.12.035
    [23] 戴可. 化学反应系统的吉布斯自由能随反应进度变化的讨论[J]. 广东化工,2019,46(01):229−230.

    DAI Ke. Discussion on the Change of Gibbs Free Energy with Extent of Reaction in Chemical Reaction System[J]. Guangdong Chem Ind,2019,46(01):229−230.
    [24] 蔡天意. 高效钠基脱碳吸收剂开发及反应机理研究[D]. 南京: 东南大学, 2020.

    CAI Tian–yi. R&D For an efficient Sodium–Based CO2 Solid Sorbent and Study on its Bicarbonation/Regeneration Mechanism[D]. Nan jing: Southeast University, 2020.
    [25] 邢佳颖, 王春波, 张月, 邹潺. Se和SeO2在O2/CaO(001)表面吸附反应的第一性原理研究[J]. 燃料化学学报,2019,47(08):993−999.

    XING Jia–ying, WANG Chun–bo, ZHANG Yue, ZOU Chan. First–principles study of the adsorption and reaction of Se and SeO2 on O2 /CaO( 001) surface[J]. J Fuel Chem Technol,2019,47(08):993−999.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  27
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 录用日期:  2022-05-09
  • 修回日期:  2022-05-05
  • 网络出版日期:  2022-05-21

目录

    /

    返回文章
    返回