留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn/Fe负载活性炭低温脱硝协同脱汞实验研究

潘磊 卢平 宋涛 黄震

潘磊, 卢平, 宋涛, 黄震. Mn/Fe负载活性炭低温脱硝协同脱汞实验研究[J]. 燃料化学学报(中英文), 2023, 51(2): 225-235. doi: 10.19906/j.cnki.JFCT.2022041
引用本文: 潘磊, 卢平, 宋涛, 黄震. Mn/Fe负载活性炭低温脱硝协同脱汞实验研究[J]. 燃料化学学报(中英文), 2023, 51(2): 225-235. doi: 10.19906/j.cnki.JFCT.2022041
PAN Lei, LU Ping, SONG Tao, HUANG Zhen. Experimental study on low temperature NO reduction and Hg0 removal of activated carbon loaded by Mn/Fe oxides[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 225-235. doi: 10.19906/j.cnki.JFCT.2022041
Citation: PAN Lei, LU Ping, SONG Tao, HUANG Zhen. Experimental study on low temperature NO reduction and Hg0 removal of activated carbon loaded by Mn/Fe oxides[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 225-235. doi: 10.19906/j.cnki.JFCT.2022041

Mn/Fe负载活性炭低温脱硝协同脱汞实验研究

doi: 10.19906/j.cnki.JFCT.2022041
详细信息
    通讯作者:

    Tel: 025-85481085, Fax: 025-85481124, E-mail: luping@njnu.edu.cn

  • 中图分类号: X511

Experimental study on low temperature NO reduction and Hg0 removal of activated carbon loaded by Mn/Fe oxides

  • 摘要: 采用等体积浸渍法制备了Mn/Fe负载椰壳活性炭碳基催化剂Mn-Fe/HAC。在固定床实验台上研究了反应温度、体积空速(GHSV)和烟气组分(O2、CO、SO2和Hg0)对其脱硝脱汞性能的影响,并结合N2吸附-脱附、NH3-TPD、H2-TPR、Hg-TPD以及瞬态反应测试,分析其脱硝脱汞机理。结果表明,Mn/Fe负载可以明显促进碳基催化剂低温脱硝活性,添加Fe可提高催化剂表面的酸性位点数量和还原能力,促进催化剂活性,进一步拓宽其脱硝温度窗口;7Mn0.5Fe/HAC催化剂在160−220 ℃下的脱硝效率可达95%,且在100−220 ℃下Mn和Fe负载碳基催化剂脱汞效率基本稳定在100%。7Mn0.5Fe/HAC催化剂脱硝效率随着GHSV增加而逐渐降低,而脱汞效率则保持稳定。无O2条件下Mn/Fe催化剂脱硝效率较低(约为50%),而当烟气中O2含量大于6%,其脱硝效率可稳定在95%以上。Hg0浓度对Mn/Fe负载碳基催化剂脱硝性能影响不大,CO有一定抑制作用,而高浓度SO2抑制作用较为显著。Mn和Fe共负载可提高抗硫性,在含150 μL/L SO2模拟烟气下,7Mn0.5Fe/HAC催化剂在180 ℃的脱硝效率仍可稳定在80%以上。Mn/Fe负载碳基催化剂脱硝遵循E-R机理,即NH3先吸附于活性位点,再与气态NO反应,最终将NO还原为N2;而脱汞遵循L-H机理,即Hg0先吸附于活性位点,形成吸附态Hg0,然后与活性氧以及吸附态NO2与SO2反应分别生成HgO、Hg(NO3)2和HgSO4
  • FIG. 2098.  FIG. 2098.

    FIG. 2098.  FIG. 2098.

    图  1  催化剂制备流程示意图

    Figure  1  Preparation procedure of Mn/Fe modified carbon-based catalysts

    图  2  固定床烟气脱硝脱汞实验装置示意图

    Figure  2  Experimental setup of fixed-bed reactor for NO reduction and Hg0 removal

    图  3  温度对碳基催化剂脱硝脱汞性能的影响

    Figure  3  Effects of reaction temperature on simultaneous removal of NO and Hg0 over carbon-based catalysts (a): NO removal efficiency; (b): Hg0 removal efficiency

    图  4  GHSV对碳基催化剂脱硝脱汞性能的影响

    Figure  4  Effects of GHSV on NO and Hg0 removal over carbon-based catalysts

    图  5  O2体积分数对碳基催化剂脱硝脱汞性能的影响

    Figure  5  Effects of O2 content on NO and Hg0 removal efficiency over carbon-based catalysts

    图  6  CO体积分数对碳基催化剂脱硝脱汞性能的影响

    Figure  6  Effects of CO concentration on NO and Hg0 removal efficiency over carbon-based catalysts

    图  7  SO2体积分数对碳基催化剂脱硝脱汞性能的影响

    Figure  7  Effects of SO2 content on NO and Hg0 removal efficiency over carbon-based catalysts

    图  8  Hg0质量浓度对催化剂脱硝性能影响

    Figure  8  Effects of Hg0 concentration on NO removal efficiency over carbon-based catalysts

    图  9  碳基催化剂的NH3-TPD谱图

    Figure  9  NH3-TPD profiles of carbon-based catalysts

    图  10  碳基催化剂的H2-TPR谱图

    Figure  10  H2-TPR profiles of carbon-based catalysts

    图  11  7Mn0.5Fe/HAC催化剂SCR的瞬态响应过程

    Figure  11  Transient response during SCR process over 7Mn0.5Fe/HAC

    (a): NH3; (b): NO

    图  12  7Mn0.5Fe/HAC(O)和7Mn0.5Fe/HAC(S)催化剂的Hg程序升温曲线

    Figure  12  Hg-TPD profiles of 7Mn0.5Fe/HAC(O) and 7Mn0.5Fe/HAC(S)

    表  1  椰壳活性炭的理化特性参数

    Table  1  Parameters of physiochemical property of CAC

    CarrierBET surface areaAshParticle sizeElemental analysis w/%
    /(m2·g−1)w/%meshCHONS
    CAC515.1155−871.792.0225.780.320.09
    下载: 导出CSV

    表  2  模拟烟气组分

    Table  2  Simulated flue gas composition

    O2/%CO2/%NO/(μL·L−1)NH3/(μL·L−1)SO2/(μL·L−1)CO/(μL·L−1)Hg0/(μg·m−3)N2/%
    6−16 12 400 400 ~150 ~8000 ~90 balance gas
    下载: 导出CSV

    表  3  碳基催化剂的比表面积及孔结构参数

    Table  3  Specific surface area and pore structure parameters of carbon-based catalysts

    Carbon-based catalystBET surface area
    /(m2·g−1)
    Total pore volume
    /(cm3·g−1)
    Average pore diameter
    /nm
    HAC441.60.1861.051
    0.5Fe/HAC511.90.2370.483
    1Fe/HAC535.60.2400.503
    7Mn/HAC502.60.2331.051
    7Mn0.5Fe/HAC502.30.2151.051
    7Mn/HAC(S)437.10.1920.548
    7Mn0.5Fe/HAC(S)427.60.1930.483
    下载: 导出CSV
  • [1] SHAN W P, SONG H. Catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. Catal Sci Technol,2015,5(9):4280−4288. doi: 10.1039/C5CY00737B
    [2] YING H, DENG M H, LI T Q, JAN J P G, CHEN Q Q, YANG X E, HE Z L. Anthropogenic mercury emissions from 1980 to 2012 in China[J]. Environ Pollut,2017,226:230−239. doi: 10.1016/j.envpol.2017.03.059
    [3] XU Y F, WU X D, LIN Q W, HU J F, RAN R, WENG D. SO2 promoted V2O5-MoO3/TiO2 catalyst for NH3-SCR of NOx at low temperatures[J]. Appl Catal A: Gen,2019,570:42−50. doi: 10.1016/j.apcata.2018.10.040
    [4] JAEGERS N R, LAI J K, HE Y, WALTER E, DIXON D A, VASILIU M, CHEN Y, WANG C M, HU M Y, MUELLER K T, WACHS I E, WANG Y, HU J Z. Mechanism by which tungsten oxide promotes the activity of supported V2O5/TiO2 catalysts for NOx abatement: Structural effects revealed by V-51 MAS NMR spectroscopy[J]. Angew Chem Int Ed,2019,58(36):12609−12616. doi: 10.1002/anie.201904503
    [5] CIMINO S, SCALA F. Removal of elemental mercury by MnOx catalysts supported on TiO2 or Al2O3[J]. Ind Eng Chem Res,2016,55(18):5133−5138. doi: 10.1021/acs.iecr.5b04147
    [6] LIU H, ZHAO Y C, ZHOU Y M, CHANG L, ZHANG J Y. Removal of gaseous elemental mercury by modified diatomite[J]. Sci Total Environ,2019,652:651−659. doi: 10.1016/j.scitotenv.2018.10.291
    [7] SHEN H Z, IE I R, YUAN C S, HUNG C H, CHEN W H. Removal of elemental mercury by TiO2 doped with WO3 and V2O5 for their photo- and thermo-catalytic removal mechanisms[J]. Environ Sci Pollut Res,2016,23(6):5839−5852. doi: 10.1007/s11356-015-5738-2
    [8] ZHANG X N, LI C T, ZHAO L K, ZHANG J, ZENG G M, XIE Y E, YU M E. Simultaneous removal of elemental mercury and NO from flue gas by V2O5-CeO2/TiO2 catalysts[J]. Appl Surf Sci,2015,347:392−400. doi: 10.1016/j.apsusc.2015.04.039
    [9] ZHAO B, LIU X W, ZHOU Z J, SHAO H Z, WANG C, SI J P, XU M H. Effect of molybdenum on mercury oxidized by V2O5-MoO3/TiO2 catalysts[J]. Chem Eng J,2014,253:508−517. doi: 10.1016/j.cej.2014.05.071
    [10] ZHAO L K, LI C T, WANG Y, WU H Y, GAO L, ZHANG J, ZENG G M. Simultaneous removal of elemental mercury and NO from simulated flue gas using a CeO2 modified V2O5-WO3/TiO2 catalyst[J]. Catal Sci Technol,2016,6(15):6076−6086. doi: 10.1039/C5CY01576F
    [11] QIAN L X, DING L, LONG H M, HU Y L, YU Z W, XU C C. The poisoning effect of sintering dust on V2O5-WO3/TiO2 catalyst for NOx removal in iron ore sintering flue gas[J]. Ironmak Steelmak,2021,48(5):527−533. doi: 10.1080/03019233.2020.1815268
    [12] 侯学军, 章小明, 程文博, 王馨, 王春霞, 徐盛名, 黄国勇. 废钒钛基SCR催化剂的处置方法研究进展[J]. 化工进展,2021,40(10):5313−5324.

    HOU Xue-jun, ZHANG Xiao-ming, CHENG Wen-bo, WANG Xin, WANG Chun-xia, XU Sheng-ming, HUANG Guo-yong. Research on disposal methods of spent vanadium-titanium-based catalysts[J]. Chem Ind Eng Prog,2021,40(10):5313−5324.
    [13] 李扬, 李向阳, 鲁子龙, 黄攀, 赵永椿, 张军营, 胡浩权. 改性煤基活性炭对燃煤烟气中汞的脱除[J]. 工程热物理学报,2020,41(4):261−267.

    LI Yang, LI Xiang-yang, LU Zi-long, HUANG Pan, ZHAO Yong-chun, ZHANG Jun-ying, HU Hao-quan. Removal of elemental mercury from flue gas by modified coal-based activated carbon[J]. J Eng Thermophys,2020,41(4):261−267.
    [14] 陈薇, 肖高, 郭杰, 刘明华, 齐赛男, 刘学虎, 李军, 华坚, 王涛, 李新. 煤基活性炭表面改性对稀土负载型CeO2/AC低温脱硝性能的影响[J]. 环境工程学报,2018,12(7):1959−1967. doi: 10.12030/j.cjee.201712188

    CHEN Wei, XIAO Gao, GUO Jie, LIU Ming-hua, QI Sai-nan, LIU Xue-hu, LI Jun, HUA Jian, WANG Tao, LI Xin. Effect of surface modification of coal based activated carbon on low temperature denitration performance of rare-earth supported CeO2/AC[J]. Chin J Environ Eng,2018,12(7):1959−1967. doi: 10.12030/j.cjee.201712188
    [15] 吴海苗, 王晓波, 归柯庭. 以活性炭为载体的负载型催化剂的SCR脱硝性能[J]. 东南大学学报:自然科学版,2013,43(4):814−818.

    WU Hai-miao, WANG Xiao-bo, GUI Ke-ting. Performance of SCR denitration of impregnated catalysts using activated carbon as support[J]. J Southeast Univ: Nat Sci Ed,2013,43(4):814−818.
    [16] 陈潇雪, 宋敏, 孟凡跃, 卫月星. FexMnCe1-AC低温SCR催化剂SO2中毒机理研究[J]. 化工学报,2019,70(8):3000−3010.

    CHEN Xiao-xue, SONG Min, MENG Fan-yue, WEI Yue-xing. Mechanism study on SO2 poisoning of FexMnCe1-AC catalyst for low temperature SCR[J]. CIESC J,2019,70(8):3000−3010.
    [17] ZHANG S B, ZHAO Y C, YANG J P, ZHANG J Y, ZHENG C G. Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas[J]. Chem Eng J,2018,348:618−629. doi: 10.1016/j.cej.2018.05.037
    [18] LIN Q C, LI J H, MA L, HAO J M. Selective catalytic reduction of NO with NH3 over Mn-Fe/USY under lean burn conditions[J]. Catal Today,2010,151(3/4):251−256. doi: 10.1016/j.cattod.2010.01.026
    [19] 吴昊, 刘忠生, 王学海, 李海英. 掺杂元素的氧化锰基低温NH3选择性还原氮氧化物催化剂研究进展[J]. 工业催化,2012,20(9):5−12. doi: 10.3969/j.issn.1008-1143.2012.09.002

    WU Hao, LIU Zhong-sheng, WANG Xue-hai, LI Hai-ying. Research progress in manganese oxide-based catalysts doped with different elements for low-temperature selective catalytic reduction of NOx with NH3[J]. Ind Catal,2012,20(9):5−12. doi: 10.3969/j.issn.1008-1143.2012.09.002
    [20] 潘磊, 卢平, 徐贵玲, 陈丹丹, 黄震, 宋涛. Mn/Fe改性碳基催化剂低温脱硝特性[J]. 中国电机工程学报,2021,41(24):8510−8520. doi: 10.13334/j.0258-8013.pcsee.202530

    PAN Lei, LU Ping, XU Gui-ling, CHEN Dan-dan, HUANG Zhen, SONG Tao. Low temperature NO reduction of carbon-based catalysts modified by Mn/Fe oxides[J]. Proc CSEE,2021,41(24):8510−8520. doi: 10.13334/j.0258-8013.pcsee.202530
    [21] YAO L, REN S, LIU Q C, YANG J, JIANG L J, FAN C, CHEN D Y. Role of nitrogen functional groups and manganese oxides on the reduction of NO over modified semi-coke catalyst at low temperature[J]. Res Chem Intermed,2019,45(2):563−579. doi: 10.1007/s11164-018-3619-2
    [22] 陈传敏, 常昊, 贾文波, 刘松涛, 曹悦, 陈若希, 乔钏熙. Mn掺杂VWTi催化剂宽温区脱硝实验研究[J]. 燃料化学学报,2022,50(3):357−365.

    CHEN Chuan-min, CHANG Hao, JIA Wen-bo, LIU Song-tao, CAO Yue, CHEN Ruo-xi, QIAO Chuan-xi. Experimental study on Mn-doped VWTi catalyst for denitrification in wide temperature range[J]. J Fuel Chem Technol,2022,50(3):357−365.
    [23] YANG J P, ZHAO Y C, LIANG S F, ZHANG S B, MA S M, LI H L, ZHANG J Y, ZHENG C G. Magnetic iron-manganese binary oxide supported on carbon nanofiber (Fe3−xMnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas[J]. Chem Eng J,2018,334:216−224. doi: 10.1016/j.cej.2017.10.004
    [24] ZHU Y C, HOU Y Q, WANG J W, GUO Y P, HUANG Z G, HAN X J. Effect of SCR atmosphere on the removal of Hg0 by a V2O5-CeO2/AC catalyst at low temperature[J]. Environ Sci Technol,2019,53(9):5521−5527. doi: 10.1021/acs.est.8b07122
    [25] GAO L, LI C T, LU P, ZHANG J, DU X Y, LI S H, TANG L, CHEN J Q, ZENG G M. Simultaneous removal of Hg0 and NO from simulated flue gas over columnar activated coke granules loaded with La2O3-CeO2 at low temperature[J]. Fuel,2018,215:30−39. doi: 10.1016/j.fuel.2017.11.008
    [26] 曹蕃, 苏胜, 向军, 王鹏鹰, 胡松, 孙路石, 陆骑. Mn-Ce-Zr/γ-Al2O3催化剂低温选择性催化还原脱硝性能分析[J]. 中国电机工程学报,2015,35(9):2238−2245.

    CAO Fan, SU Sheng, XIANG Jun, WANG Peng-ying, HU Song, SUN Lu-shi, LU Qi. Performances of Mn- Ce-Zr/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO[J]. Proc CSEE,2015,35(9):2238−2245.
    [27] SOUZA M S, ARAUJO R S, OLIVEIRA A C. Optimizing reaction conditions and experimental studies of selective catalytic reduction of NO by CO over supported SBA-15 catalyst[J]. Environ Sci Pollut Res,2020,27(24):30649−30660. doi: 10.1007/s11356-020-09391-y
    [28] WANG X Q, LIU Y, WU Z B. Temperature-dependent influencing mechanism of carbon monoxide on the NH3-SCR process over ceria-based catalysts[J]. ACS EST Eng,2021,1(7):1131−1139. doi: 10.1021/acsestengg.1c00090
    [29] LI H L, WU S K, LI L Q, WANG J, MA W W, SHIH K M. CuO-CeO2/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures[J]. Catal Sci Technol,2015,5(12):5129−5138. doi: 10.1039/C5CY00794A
    [30] ZHANG J Y, LI C T, ZHAO L K, WANG T, LI S SH, ZENG G M. A sol-gel Ti-Al-Ce-nanoparticle catalyst for simultaneous removal of NO and Hg0 from simulated flue gas[J]. Chem Eng J,2017,313:1535−1547. doi: 10.1016/j.cej.2016.11.039
    [31] WANG D, PENG Y, XIONG S C, LI B, GAN L N, LU C M, CHEN J J, MA Y L, LI J H. De-reducibility mechanism of titanium on maghemite catalysts for the SCR reaction: An in situ DRIFTS and quantitative kinetics study[J]. Appl Catal B: Environ,2018,221:556−564. doi: 10.1016/j.apcatb.2017.09.045
    [32] TONG H, HUANG Y. The effects of manganese precursors on Mn-based/TiO2 catalysts for catalytic reduction of NO with NH3[J]. J Air Waste Managet Assoc,2012,62(3):271−277. doi: 10.1080/10473289.2011.646350
    [33] BONINGARI T, ETTIREDDY P R, SOMOGYVARI A, LIU Y, VORONTSOV A, MCDONALD C A, SMIRNIOTIS P G. Influence of elevated surface texture hydrated titania on Ce-doped Mn/TiO2 catalysts for the low-temperature SCR of NOx under oxygen-rich conditions[J]. J Catal,2015,325:145−155. doi: 10.1016/j.jcat.2015.03.002
    [34] LIN Y T, LI Y R, XU Z C, XIONG J, ZHU T Y. Transformation of functional groups in the reduction of NO with NH3 over nitrogen-enriched activated carbons[J]. Fuel,2018,223:312−323. doi: 10.1016/j.fuel.2018.01.092
    [35] YANG L, WANG P C, YAO L, MENG X M, JIA C Q, JIANG X, JIANG W J. Copper Doping promotion on Ce/CAC-CNT catalysts with high sulfur dioxide tolerance for low-temperature NH3-SCR[J]. ACS Sustainable Chem Eng,2021,9(2):987−997. doi: 10.1021/acssuschemeng.0c08490
    [36] CHEN W S, LI Z, HU F L, QIN L B, HAN J, WU G M. In-situ DRIFTS investigation on the selective catalytic reduction of NO with NH3 over the sintered ore catalyst[J]. Appl Surf Sci,2018,439:75−81. doi: 10.1016/j.apsusc.2018.01.057
    [37] ZHANG S B, DIAZ-SOMOANO M, ZHAO Y C, YANG J P, ZHANG J Y. Research on the mechanism of elemental mercury removal over Mn-based SCR catalysts by a developed Hg-TPD method[J]. Energy Fuels,2019,33(3):2467−2476. doi: 10.1021/acs.energyfuels.8b04424
    [38] 睢辉, 张梦泽, 董勇, 王鹏. 燃煤烟气中单质汞吸附与氧化机理研究进展[J]. 化工进展,2014,33(6):1582−1588+1595.

    SUI Hui, ZHANG Meng-ze, DONG Yong, WANG Peng. Research progress of adsorption and oxidation mechanism of elemental mercury from coal-fired flue gas[J]. Chem Ind Eng Prog,2014,33(6):1582−1588+1595.
    [39] 胡鹏, 段钰锋, 陈亚南, 周强, 朱纯, 丁卫科, 李春峰, 刘猛, 王双群. Mo-Mn/TiO2催化剂的协同脱硝脱汞特性[J]. 中国环境科学,2018,38(2):523−531. doi: 10.3969/j.issn.1000-6923.2018.02.014

    HU Peng, DUAN Yu-feng, CHEN Ya-nan, ZHOU Qiang, ZHU Chun, DING Wei-ke, LI Chun-feng, LIU Meng, WANG Shuang-qun. Characteristics of denitrification and mercury removal by Mo-Mn/TiO2 catalysts[J]. J Environ Sci (China),2018,38(2):523−531. doi: 10.3969/j.issn.1000-6923.2018.02.014
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  865
  • HTML全文浏览量:  82
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 修回日期:  2022-05-05
  • 录用日期:  2022-05-19
  • 网络出版日期:  2022-06-09
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回