留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LaFeO3/CQDs-g-C3Nx催化剂的光催化性能研究

王祎迪 孙有为 周峰 马会霞 王彦娟 胡绍争 张健

王祎迪, 孙有为, 周峰, 马会霞, 王彦娟, 胡绍争, 张健. LaFeO3/CQDs-g-C3Nx催化剂的光催化性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022042
引用本文: 王祎迪, 孙有为, 周峰, 马会霞, 王彦娟, 胡绍争, 张健. LaFeO3/CQDs-g-C3Nx催化剂的光催化性能研究[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022042
WANG Yi-di, SUN You-wei, ZHOU Feng, MA Hui-xia, WANG Yan-juan, HU Shao-zheng, ZHANG Jian. Photocatalytic performance study of LaFeO3/CQDs-g-C3Nx catalysts.[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022042
Citation: WANG Yi-di, SUN You-wei, ZHOU Feng, MA Hui-xia, WANG Yan-juan, HU Shao-zheng, ZHANG Jian. Photocatalytic performance study of LaFeO3/CQDs-g-C3Nx catalysts.[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022042

LaFeO3/CQDs-g-C3Nx催化剂的光催化性能研究

doi: 10.19906/j.cnki.JFCT.2022042
基金项目: 辽宁省科技厅面上项目(2021-MS-308); 辽宁省教育厅项目 (L2020016)
详细信息
    通讯作者:

    胡绍争, 教授, hushaoshenglnpu@163.com

    张健, 教授, zhangjian2011@lnpu.edu.cn

  • 中图分类号: TQ028.8

Photocatalytic performance study of LaFeO3/CQDs-g-C3Nx catalysts.

Funds: general program of Liaoning Provincial Department of Science and Technology((2021-MS-308)) and the project of Liaoning Provincial Department of Education(L2020016)
  • 摘要: 本实验制备了一种Z型含氮缺陷的石墨相氮化碳(LaFeO3/CQDs-g-C3Nx)复合光催化剂。利用X射线衍射(XRD)、紫外–可见光漫反射(UV–Vis DRS)、光致发光光谱(PL)、扫描电镜(SEM)、透射电镜(TEM)以及X射线光电子能谱(XPS)等手段对催化剂进行了表征。结果表明:氮缺陷和CQDs的引入能增强光生载流子的迁移效率。LaFeO3/CQDs-g-C3Nx复合材料对罗丹明B(RhB)的光催化降解率是纯g-C3N4的3.98倍,并具有良好的光催化稳定性。同时对抗生素和其他有机污染物也表现出良好的降解能力。
  • 图  1  (a)LaFeO3、g-C3N4、g-C3Nx、3LaFeO3/g-C3Nx以及3LaFeO3/CQDs-g-C3Nx的XRD谱图;(b)局部放大图

    Figure  1  (a) XRD spectra of LaFeO3, g-C3N4, g-C3Nx, 3LaFeO3/g-C3Nx and 3LaFeO3/CQDs-g-C3Nx; (b) local magnification

    图  2  LaFeO3、g-C3N4、g-C3Nx、3LaFeO3/g-C3Nx与3LaFeO3/CQDs-g-C3Nx的UV–vis DRS谱图

    Figure  2  UV–vis DRS spectra of LaFeO3, g-C3N4, g-C3Nx, 3LaFeO3/g-C3Nx and 3LaFeO3/CQDs-g-C3Nx

    图  3  g-C3N4、g-C3Nx、3LaFeO3/g-C3N4、3LaFeO3/CQDs-g-C3N4和3LaFeO3/CQDs-g-C3Nx的PL谱图

    Figure  3  PL spectra of g-C3N4, g-C3Nx, 3LaFeO3/g-C3N4, 3LaFeO3/CQDs-g-C3N4 and 3LaFeO3/CQDs-g-C3Nx

    图  4  (a)~(e)g-C3N4、g-C3Nx、LaFeO3、3LaFeO3/CQDs-g-C3Nx的SEM图;(f)~(i)g-C3N4、g-C3Nx、CQDs和3LaFeO3/CQDs-g-C3Nx的TEM图

    Figure  4  SEM images of (a) g-C3N4, (b, c) g-C3Nx, (d) LaFeO3, (e) 3LaFeO3/CQDs-g-C3Nx; TEM images of (f) g-C3N4, (g) g-C3Nx, (h) CQDs and (i) 3LaFeO3/CQDs-g-C3Nx

    图  5  (a)纯g-C3N4与g-C3Nx的C 1s谱图; (b) 纯g-C3N4与g-C3Nx的N 1s谱图;(c)LaFeO3和3LaFeO3/CQDs-g-C3Nx的La 3d谱图; (d) LaFeO3和3LaFeO3/CQDs-g-C3Nx的Fe 2p谱图; (e) LaFeO3的O 1s谱图;(f)纯g-C3N4与g-C3Nx的EPR图

    Figure  5  (a) C 1s spectrum of pure g-C3N4 with g-C3Nx; (b) N 1s spectrum of pure g-C3N4 with g-C3Nx; (c) La 3d spectrum of LaFeO3; (d) Fe 2p spectrum of LaFeO3; (e) O 1s spectrum of LaFeO3; (f) EPR diagram of pure g-C3N4 versus g-C3Nx

    图  6  (a)纯g-C3N4、3LaFeO3/g-C3N4、3LaFeO3/CQDs-g-C3N4以及不同LaFeO3负载量对RhB降解率的影响图;(b)–ln(C/C0)与t的关系图

    Figure  6  (a) Plots of the effect of pure g-C3N4, 3LaFeO3/g-C3N4, 3LaFeO3/CQDs-g-C3N4 and different LaFeO3 loadings on the degradation rate of RhB; (b) –ln(C/C0) vs. t

    图  7  纯g-C3N4与3LaFeO3/CQDs-g-C3Nx对TCL、MB、MO的降解图

    Figure  7  Degradation of TCL, MB and MO by pure g-C3N4 and 3LaFeO3/CQDs-g-C3Nx

    图  8  催化剂的循环实验

    Figure  8  Catalyst cycling experiments

    图  9  催化剂的捕获实验

    Figure  9  Catalyst capture experiments

    图  10  光催化机理图

    Figure  10  Photocatalytic mechanismhe

  • [1] MIAN M M, LIU G. Recent progress in biochar–supported photocatalysts: synthesis, role of biochar, and applications[J]. RSC Adv,2018,8(26):14237−14248. doi: 10.1039/C8RA02258E
    [2] WANG X, MAEDA K, THOMAS A, TAKANABE K, XIN G, CARLSSON J M, DOMEN K, ANTONIETTI M. A metal–free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nat Mater,2009,8(1):76−80. doi: 10.1038/nmat2317
    [3] LUO B, SONG R, JING D. Significantly enhanced photocatalytic hydrogen generation over graphitic carbon nitride with carefully modified intralayer structures[J]. Chem Eng J,2018,332:499−507. doi: 10.1016/j.cej.2017.09.119
    [4] ZHONG Y, WANG Z, FENG J, YAN S, ZHANG H, LI Z, ZOU Z. Improvement in photocatalytic H2 evolution over g-C3N4 prepared from protonated melamine[J]. Appl Surf Sci,2014,295(10):253−259.
    [5] 彭小明, 罗文栋, 胡锋平, 戴红玲, 祝泽兵. 石墨类氮化碳改性方法的研究进展[J]. 水处理技术,2019,45(12):1−6+12.

    PENG Xiao-ming, LUO Wen-dong, HU Feng-ping, DAI Hong-ling, ZHU Ze-bing. Progress in the study of graphite–based carbon nitride modification methods[J]. Technology of Water Treatment,2019,45(12):1−6+12.
    [6] ZHU Y, ZHONG X, JIA X, YAO J. Bimetallic Ni-Co nanoparticles confined within nitrogen defective carbon nitride nanotubes for enhanced photocatalytic hydrogen production[J]. Environ Res,2022,203:111844. doi: 10.1016/j.envres.2021.111844
    [7] YU H, SHI R, ZHAO Y, BIAN T, ZHAO Y, ZHOU C, WATERHOUSE G I N, WU L Z, TUNG C H, ZHANG T. Alkali–Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible–Light–Driven Hydrogen Evolution[J]. Adv Mater,2017,29(16):1605148. doi: 10.1002/adma.201605148
    [8] LIN Y, YANG Y, GUO W, WANG L, ZHANG R, LIU Y, ZHAI Y. Preparation of double–vacancy modified carbon nitride to greatly improve the activity of photocatalytic hydrogen generation[J]. Appl Surf Sci,2021,560:150029. doi: 10.1016/j.apsusc.2021.150029
    [9] XING W, TU W, OU M, WU S, YIN S, WANG H, CHEN G, XU R. Anchoring Active Pt2+/Pt0 Hybrid Nanodots on g-C3N4 Nitrogen Vacancies for Photocatalytic H2 Evolution[J]. ChemSusChem,2019,12(9):2029−2034. doi: 10.1002/cssc.201801431
    [10] LIU X, ZHANG Q, MA D. Advances in 2D/2D Z–Scheme Heterojunctions for Photocatalytic Applications[J]. Sol RRL,2020,5(2):2000397.
    [11] WANG P, CAO Y, ZHOU X, XU C, YAN Q. Facile construction of 3D hierarchical flake ball–shaped γ-AgI/Bi2WO6 Z–scheme heterojunction towards enhanced visible–light photocatalytic performance[J]. Appl Surf Sci,2020,531:147345. doi: 10.1016/j.apsusc.2020.147345
    [12] TIAN L, YANG X, CUI X, LIU Q, TANG H. Fabrication of dual direct Z–scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance[J]. Appl Surf Sci,2019,463:9−17. doi: 10.1016/j.apsusc.2018.08.209
    [13] SHEN M, ZHAO Z, CHEN J, SU Y, WANG J, WANG X. Effects of calcium substitute in LaMnO3 perovskites for NO catalytic oxidation[J]. J Rare Earths,2013,31(2):119−123. doi: 10.1016/S1002-0721(12)60244-0
    [14] GAO K, LI S. Multi–modal TiO2-LaFeO3, composite films with high photocatalytic activity and hydrophilicity[J]. Appl Surf Sci,2012,258(17):6460−6464. doi: 10.1016/j.apsusc.2012.03.061
    [15] XU J, LIU C, NIU J, ZHU Y, ZANG B, XIE M, CHEN M. Synthesis of LaFeO3/Bi3NbO7 p–n heterojunction photocatalysts with enhanced visible–light–responsive activity for photocatalytic reduction of Cr(Ⅵ)[J]. J Alloys Compd,2020,815:152492. doi: 10.1016/j.jallcom.2019.152492
    [16] IERVOLINOA G, VAIANOA V, SANNINOA D, RIZZOB L, PALMAA V. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru–doped LaFeO3[J]. Appl Catal B,2017,207:182−194. doi: 10.1016/j.apcatb.2017.02.008
    [17] GARCIA-MUNOZ P, FRESNO F, IVANEZ J, ROBERT D, KELLER N. Activity enhancement pathways in LaFeO3@TiO2 heterojunction photocatalysts for visible and solar light driven degradation of myclobutanil pesticide in water[J]. J Hazard Mater,2020,400:123099. doi: 10.1016/j.jhazmat.2020.123099
    [18] XU Y, LIU J, GAO C, WANG E. Applications of carbon quantum dots in electrochemiluminescence: a mini review[J]. Electrochem commun,2014,48:151−154. doi: 10.1016/j.elecom.2014.08.032
    [19] KARIMI-NAZARABAD M, AHMADZADEH H, GOHARSHADI E K. Porous perovskite–lanthanum cobaltite as an efficient cocatalyst in photoelectrocatalytic water oxidation by bismuth doped g-C3N4[J]. Sol Energy,2021,227:426−437. doi: 10.1016/j.solener.2021.09.028
    [20] LI Y, ZHAO Y, CHENG H H, HU Y, SHI G Q, DAI L M, QU L T. Nitrogen–doped graphene quantum dots with oxygen–rich functional groups[J]. J Am Chem Soc,2012,134(1):15−18. doi: 10.1021/ja206030c
    [21] WANG W, NI Y, XU Z. One–step uniformly hybrid carbon quantum dots with high–reactive TiO2 for photocatalytic application[J]. J Alloy Compd,2015,622:303−308. doi: 10.1016/j.jallcom.2014.10.076
    [22] WANG Y, LIU X, LIU J, HAN B, HU X, YANG F, XU Z, LI Y, JIA S, LI Z, ZHAO Y. Carbon Quantum Dot Implanted Graphite Carbon Nitride Nanotubes: Excellent Charge Separation and Enhanced Photocatalytic Hydrogen Evolution[J]. Angew Chem Int Ed,2018,57(20):5765−5771. doi: 10.1002/anie.201802014
    [23] 刘帅, 李学雷, 王烁天, 王彦娟, 苑兴洲, 张健, 梁飞雪, 胡绍争. 碳量子点修饰石墨相氮化碳光催化降解罗丹明B的研究[J]. 中国环境科学,2020,40(7):2909−2916. doi: 10.3969/j.issn.1000-6923.2020.07.014

    LIU Shuai, LI Xue-lei, WANG Shuo-tian, WANG Yan-juan, YUAN Xing-zhou, ZHANG Jian, LIANG Fei-xue, HU Shao-zheng. Photocatalytic degradation of rhodamine B by carbon quantum dot modified graphite phase carbon nitride[J]. China Environmental Science,2020,40(7):2909−2916. doi: 10.3969/j.issn.1000-6923.2020.07.014
    [24] 刘帅, 李学雷, 王烁天, 李旭贺, 王彦娟, 苑兴洲, 张健, 封瑞江. CeO2改性WO3/g-C3N4光催化氧化脱硫性能[J]. 化工学报,2020,71(4):1618−1626.

    LIU Shuai, LI Xue-lei, WANG Shuo-tian, LI Xu-he, WANG Yan-juan, YUAN Xing-zhou, ZHANG Jian, FENG Rui-jiang. WO3/g-C3N4 modified by CeO2 and its oxidation and desulfurization properties[J]. CIESC Journal,2020,71(4):1618−1626.
    [25] SHEN Q, LI N, BIBI R, RICHARD N, LIU M, ZHOU J, JING D. Incorporating nitrogen defects into novel few–layer carbon nitride nanosheets for enhanced photocatalytic H2 production[J]. Appl Surf Sci,2020,529:147104. doi: 10.1016/j.apsusc.2020.147104
    [26] WANG R, WANG X, LI X, PEI L, GU X, ZHENG Z. Facile one–step synthesis of porous graphene–like g-C3N4 rich in nitrogen vacancies for enhanced H2 production from photocatalytic aqueous–phase reforming of methanol[J]. Int J Hydrog Energy,2021,46(1):197−208. doi: 10.1016/j.ijhydene.2020.09.156
    [27] LEI G, CAO Y, ZHAO W, SHEN D L, XIAO Y, JIANG L. Exfoliation of graphitic carbon nitride for enhanced oxidative desulfurization: a facile and general strategy[J]. ACS Sustain Chem Eng,2019,7:4941−4950. doi: 10.1021/acssuschemeng.8b05553
    [28] WANG X, LI Y, ZHANG X, LI J, LI X, WANG C. Design and fabrication of NiS/LaFeO3 heterostructures for high efficient photodegradation of organic dyes[J]. Appl Surf Sci,2020,504:144363. doi: 10.1016/j.apsusc.2019.144363
    [29] WIRANWETCHAYAN O, PROMNOPAS S, PHADUNGDHITIDHADA S, PHURUANGRAT A, THONGTEM T, SINGIAI P, THONGTEM S. Characterization of perovskite LaFeO3 synthesized by microwave plasma method for photocatalytic applications[J]. Ceramics International,2019,45(4):4802−4809. doi: 10.1016/j.ceramint.2018.11.175
    [30] ZHU M, HAN M, ZHU C, HU L, HUANG H, LIU Y, KANG Z. Strong coupling effect at the interface of cobalt Cdphate–carbon dots boost photocatalytic water splitting[J]. J Colloid Interface Sci,2018,530:256−263. doi: 10.1016/j.jcis.2018.06.078
    [31] HUANG Y, LIU J, ZHAO C, JIA X, MA M, QIAN Y, YANG C, LIU K, TAN F, WANG Z, LI X, QU S, WANG Z. Facile Synthesis of Defect–Modified Thin–Layered and Porous g-C3N4 with Synergetic Improvement for Photocatalytic H2 Production[J]. ACS Appl Mater Interfaces,2020,12(47):52603−52614. doi: 10.1021/acsami.0c14262
    [32] YE Y, YANG H, WANG X, FENG W. Photocatalytic, Fenton and photo–Fenton degradation of RhB over Z–scheme g-C3N4/LaFeO3 heterojunction photocatalysts[J]. Mater Sci Semicond Process,2018,82:14−24. doi: 10.1016/j.mssp.2018.03.033
    [33] LIU T, WANG L, LU X, FAN J, CAI X, GAO B, MIAO R, WANG J, LV Y. Comparative study of the photocatalytic performance for the degradation of different dyes by ZnIn2S4: adsorption, active species, and pathways[J]. RSC Adv,2017,7(20):12292−12300. doi: 10.1039/C7RA00199A
    [34] LIU J, FANG W, WEI Z, QIN Z, JIANG Z, SHANGGUAN W. Efficient photocatalytic hydrogen evolution on N–deficient g-C3N4 achieved by a molten salt post–treatment approach[J]. Appl Catal B,2018,238:465−470. doi: 10.1016/j.apcatb.2018.07.021
    [35] GE G, GUO X, SONG C, ZHAO Z. Reconstructing Supramolecular Aggregates to Nitrogen–Deficient g-C3N4 Bunchy Tubes with Enhanced Photocatalysis for H2 Production[J]. ACS Appl Mater Interfaces,2018,10(22):18746−18753. doi: 10.1021/acsami.8b04227
    [36] QIU P, XU C, CHEN H, JIANG F, WANG X, LU R, ZHANG X. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo–oxidation activity: Role of oxygen on visible light photocatalytic activity[J]. Appl Catal B,2017,206:319−327. doi: 10.1016/j.apcatb.2017.01.058
    [37] KANG Y, YANG Y, YIN L C, KANG X, WANG L, LIU G, CHENG H M. Selective Breaking of Hydrogen Bonds of Layered Carbon Nitride for Visible Light Photocatalysis[J]. Adv Mater,2016,28(30):6471−6477. doi: 10.1002/adma.201601567
    [38] LI X, CHEN W, HE P, WANG T, LIU D, LI Y, LI Y, WANG E. Dawson–type polyoxometalate-based vacancies g-C3N4 composite–nanomaterials for efficient photocatalytic nitrogen fixation[J]. Inorg Chem Front,2019,6(11):3315−3326. doi: 10.1039/C9QI01093A
    [39] THIRUMALAIRAJAN S, GIRIJA K, HEBALKAR N Y, MANGALARAJ D, VISWANATHAN C, PONPANDIAN N. Shape evolution of perovskite LaFeO3 nanostructures: a systematic investigation of growth mechanism, properties and morphology dependent photocatalytic activities[J]. RSC Adv,2013,3(20):7549−7561. doi: 10.1039/c3ra00006k
    [40] SIGNORELLI A J, HAYES R G. X–ray photoelectron spectroscopy of various core levels of lanthanide ions: the roles of monopole excitation and electrostatic coupling[J]. Phys Rev B,1973,8(1):81−86. doi: 10.1103/PhysRevB.8.81
    [41] DENG G, CHEN Y, TAO M, WU C, SHEN X, YANG H, LIU M. Electrochemical properties and hydrogen storage mechanism of perovskite–type oxide LaFeO3 as a negative electrode for Ni/MH batteries[J]. Electrochim Acta,2010,55(3):1120−1124. doi: 10.1016/j.electacta.2009.09.078
    [42] TAFFA D H, DILLERT R, ULPE A C, BAUERFEIND K C L, BREDOW T, BAHNEMANN D W, WARK M. Photoelectrochemical and theoretical investigations of spinel type ferrites (MxFe3-xO4) for water splitting: A mini–review[J]. J Photonics Energy,2016,7(1):012009. doi: 10.1117/1.JPE.7.012009
    [43] WANG H, GUAN J, LI J, LI X, MA C, HUO P, YAN Y. Fabricated g-C3N4/Ag/m-CeO2 composite photocatalyst for enhanced photoconversion of CO2[J]. Appl Surf Sci,2020,506:144931. doi: 10.1016/j.apsusc.2019.144931
    [44] MA H, SHI Z, LI Q, LI S. Preparation of graphitic carbon nitride with large specific surface area and outstanding N2 photofixation ability via a dissolve–regrowth process[J]. J Phys Chem Solids,2016,99:51−58. doi: 10.1016/j.jpcs.2016.08.008
    [45] LI X, LI Z, XING Z, SONG Z, YE B, WANG Z, WU Q. UV-LED/P25-based photocatalysis for effective degradation of isothiazolone biocide[J]. Front Environ Sci Eng,2020,15(5):85.
    [46] SHI H, CHEN G, ZHANG C, ZOU Z. Polymeric g-C3N4 Coupled with NaNbO3 Nanowires toward Enhanced Photocatalytic Reduction of CO2 into Renewable Fuel[J]. ACS Catal,2014,4(10):3637−3643. doi: 10.1021/cs500848f
    [47] TAN G, SHE L, LIU T, XU C, REN H, XIA A. Ultrasonic chemical synthesis of hybrid mpg-C3N4/BiPO4 heterostructured photocatalysts with improved visible light photocatalytic activity[J]. Appl Catal B,2017,207:120−133. doi: 10.1016/j.apcatb.2017.02.025
    [48] BASITH M, AHSAN R, ZARIN I, JALIL M. Enhanced photocatalytic dye degradation and hydrogen production ability of Bi25Fe40-rGO nanocomposite and mechanism insight[J]. Sci Rep,2018,8(1):1−11.
  • 加载中
图(10)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 录用日期:  2022-05-16
  • 修回日期:  2022-05-14
  • 网络出版日期:  2022-06-09

目录

    /

    返回文章
    返回