留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Y分子筛表面高分散铜活性物种构建及甲醇氧化羰基化性能

张志浩 许贞军 任坤 王佳君 付廷俊 李忠

张志浩, 许贞军, 任坤, 王佳君, 付廷俊, 李忠. Y分子筛表面高分散铜活性物种构建及甲醇氧化羰基化性能[J]. 燃料化学学报(中英文), 2022, 50(12): 1601-1610. doi: 10.19906/j.cnki.JFCT.2022043
引用本文: 张志浩, 许贞军, 任坤, 王佳君, 付廷俊, 李忠. Y分子筛表面高分散铜活性物种构建及甲醇氧化羰基化性能[J]. 燃料化学学报(中英文), 2022, 50(12): 1601-1610. doi: 10.19906/j.cnki.JFCT.2022043
ZHANG Zhi-hao, XU Zhen-jun, REN Kun, WANG Jia-jun, FU Ting-jun, LI Zhong. Construction of highly dispersed active copper species on Y molecular sieve and performance of methanol oxidation carbonylation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1601-1610. doi: 10.19906/j.cnki.JFCT.2022043
Citation: ZHANG Zhi-hao, XU Zhen-jun, REN Kun, WANG Jia-jun, FU Ting-jun, LI Zhong. Construction of highly dispersed active copper species on Y molecular sieve and performance of methanol oxidation carbonylation[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1601-1610. doi: 10.19906/j.cnki.JFCT.2022043

Y分子筛表面高分散铜活性物种构建及甲醇氧化羰基化性能

doi: 10.19906/j.cnki.JFCT.2022043
基金项目: 国家自然科学基金(U1510203)和山西省重点研发计划(201803D421011)资助
详细信息
    通讯作者:

    E-mail: futingjun@tyut.edu.cn

    lizhong@tyut.edu.cn

  • 中图分类号: TQ072

Construction of highly dispersed active copper species on Y molecular sieve and performance of methanol oxidation carbonylation

Funds: The project was supported by Natural Science Foundation of China (U1510203) and Key Research and Development Project of Shanxi Province (201803D421011).
  • 摘要: 本研究采用溶液离子交换法制备了不同载量的CuY催化剂,结合XRD、TEM、H2-TPR、XPS、NH3-TPD和CH3OH-TPD等分析CuY微观结构,探讨了铜氨溶液浓度及活化温度对CuY表面铜物种状态及性能的影响。发现增大交换溶液浓度虽会降低催化剂孔隙率,但能将铜载量由2.11%显著提升至9.95%,并仍保持着铜物种的高分散,铜粒径不足4 nm。溶液交换会破坏表面酸结构而减少表面弱酸位,抑制副反应进而提高DMC选择性。低载量催化剂铜物种以离子态铜为主,增加铜含量提升离子态铜含量的同时,也显著增加了CuOx,能使催化性能迅速提高,甲醇转化率和DMC收率分别达到9.07%和396.27 mg/(g·h)。控制催化剂活化温度研究铜物种活化过程发现,适宜温度的活化会促进表面铜物种向分子筛内部孔道的扩散和交换,并减弱甲醇的吸附强度,利于性能的提升。高载量催化剂相比低载量催化剂能在低温下活化获得更多的Cu+和CuOx而表现出高催化活性。本工作研究结果为高性能CuY催化剂的设计和制备提供了理论基础。
  • FIG. 2026.  FIG. 2026.

    FIG. 2026.  FIG. 2026.

    图  1  催化剂的(a)N2物理吸附-脱附等温线及(b)织构性质

    Figure  1  (a) N2 physical adsorption and desorption isotherms and (b) texture properties of catalysts

    图  2  (a)铜氨溶液浓度与铜载量间的关系及一次离心结束时离心液照片和(b)催化剂的XRD谱图

    Figure  2  (a) Relationship between copper ammonia solution concentration and copper load and the photo of centrifugal fluid at the end of the first centrifugation and (b) XRD patterns of catalysts

    图  3  催化剂的TEM照片及铜粒径分布

    Figure  3  TEM images of catalysts and copper particle size distribution histogram

    图  4  催化剂的(a)H2-TPR谱图和(b)铜物种的耗氢量

    Figure  4  (a) H2-TPR patterns of catalysts and (b) hydrogen consumption of copper species

    图  5  催化剂的(a)NH3-TPD谱图和(b)弱酸密度

    Figure  5  (a) NH3-TPD patterns and (b) the density of weak acid sites of the catalysts

    图  6  催化剂的(a)甲醇转化率、(b)DMC选择性、(c)DMC时空收率和(d)铜含量与收率的关系

    Figure  6  (a) Methanol conversion, (b) selectivity of DMC, (c) space time yield of DMC of catalyst and (d) relationship between copper load and yield

    图  7  催化剂的(a)甲醇转化率、(b)DMC时空收率、(c)XRD谱图和(d)N2物理吸附-脱附等温线

    Figure  7  (a) Methanol conversion, (b) space time yield of DMC, (c) XRD patterns and (d) N2 physical adsorption and desorption isotherms of catalysts

    图  8  催化剂的H2-TPR谱图

    Figure  8  H2-TPR patterns of catalysts

    图  9  催化剂的(a)Cu 2p XPS谱图、(b)表面铜含量和(c)TEM照片

    Figure  9  (a) Cu 2p XPS patterns, (b) copper content on the surface and (c) TEM images of catalysts

    图  10  催化剂的CH3OH-TPD谱图

    Figure  10  CH3OH-TPD patterns of catalysts

    表  1  不同浓度交换溶液制备的CuY催化剂的活性

    Table  1  Activity of CuY catalysts prepared with different exchange solutions

    Sample Cu content/
    %
    $x_{{\rm{CH}}_3{\rm{OH}}} $/
    %
    sDMC/
    %
    STYDMC/
    (mg·g−1·h−1)
    Y-0.02 2.11 1.03 48.56 33.69
    Y-0.04 4.44 2.52 60.93 103.66
    Y-0.06 7.48 6.61 64.16 286.21
    Y-0.08 7.86 7.66 64.94 335.76
    Y-0.10 8.59 9.07 64.66 396.27
    Y-0.12 9.95 9.02 64.84 394.47
    下载: 导出CSV

    表  2  不同催化剂的活性及织构性质

    Table  2  The reactivities and texture properties of different catalysts

    Sample $x_{ {\rm{CH} }_3{\rm{OH} } } $/
    %
    sDMC/
    %
    STYDMC/
    (mg·g−1·h−1)
    SBET/
    (m2·g−1)
    daverage/
    nm
    vtotal/
    (cm3·g−1)
    Y 744 1.94 0.37
    Y0.04-200 0.77 41.42 21.91 647 2.19 0.35
    Y0.04-400 1.11 30.29 22.63 650 2.20 0.35
    Y0.04-600 2.18 64.45 94.76 651 2.12 0.35
    Y0.04-800 0.03 0 0 1.53 37.66 0.01
    Y0.10-200 1.40 75.41 72.35 583 2.23 0.33
    Y0.10-400 8.23 66.33 368.92 606 2.18 0.33
    Y0.10-600 8.82 67.42 401.52 655 2.09 0.34
    Y0.10-800 0.88 0 0 0.41 94.70 0.01
    下载: 导出CSV
  • [1] XIAO Z, YANG H, ZHANG H, CHEN T, WANG G. Transesterification of dimethyl carbonate and phenol to diphenyl carbonate with the bismuth compounds[J]. Chem Pap,2018,72(9):2347−2352. doi: 10.1007/s11696-018-0467-x
    [2] FANG W, ZHANG Z, YANG Z, ZHANG Y, XU F, LI C, AN H, SONG T, LUO Y, ZHANG S. One-pot synthesis of bio-based polycarbonates from dimethyl carbonate and isosorbide under metal-free condition[J]. Green Chem,2020,22(14):4550−4560. doi: 10.1039/D0GC01440K
    [3] JIN S, HUNT A J, CLARK J H, MCELROY C R. Acid-catalysed carboxymethylation, methylation and dehydration of alcohols and phenols with dimethyl carbonate under mild conditions[J]. Green Chem,2016,18(21):5839−44. doi: 10.1039/C6GC01826B
    [4] TAKEUCHI S, FUKUTSUKA T, MIYAZAKI K, ABE T. Electrochemical lithium ion intercalation into graphite electrode in propylene carbonate-based electrolytes with dimethyl carbonate and calcium salt[J]. J Power Sources,2013,238:65−68. doi: 10.1016/j.jpowsour.2013.02.084
    [5] LIANG Y, SU K, CAO L, GAO Y, LI Z. Study on the transesterification and mechanism of bisphenol A and dimethyl carbonate catalyzed by organotin oxide[J]. Chem Pap,2019,73(9):2171−2182. doi: 10.1007/s11696-019-00759-0
    [6] SHEN Y, SU Z, ZHAO Q, SHAN R, ZHU Z, CUI P, WANG Y. Molecular simulation and optimization of extractive distillation for separation of dimethyl carbonate and methanol[J]. Process Safety Environ Prot,2022,158:181−188. doi: 10.1016/j.psep.2021.11.055
    [7] WANG J, FU T, MENG F, ZHAO D, CHUANG S S C, LI Z. Highly active catalysis of methanol oxidative carbonylation over nano Cu2O supported on micropore-rich mesoporous carbon[J]. Appl Catal B: Environ,2022,303:120890. doi: 10.1016/j.apcatb.2021.120890
    [8] HAN M S, LEE B G, SUH I, KIM H S, AHN B S, HONG S I. Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol over Cu-based catalysts - ScienceDirect[J]. J Mol Catal A: Chem,2001,170(1/2):225−234. doi: 10.1016/S1381-1169(01)00073-5
    [9] KING S T. Reaction mechanism of oxidative carbonylation of methanol to dimethyl carbonate in Cu-Y zeolite[J]. J Catal,1996,161(2):530−538. doi: 10.1006/jcat.1996.0215
    [10] KING S T. Oxidative carbonylation of methanol to dimethyl carbonate by solid-state ion-exchanged CuY catalysts[J]. Catal Today,1997,33(1):173−182.
    [11] ZHANG Y, BRIGGS D N, DE SMIT E, BELL A T. Effects of zeolite structure and composition on the synthesis of dimethyl carbonate by oxidative carbonylation of methanol on Cu-exchanged Y, ZSM-5, and Mordenite[J]. J Catal,2007,251(2):443−452. doi: 10.1016/j.jcat.2007.07.018
    [12] ZHENG X, BELL A T. A theoretical investigation of dimethyl carbonate synthesis on Cu-Y zeolite[J]. J Phys Chem C,2008,112(13):5043−5047. doi: 10.1021/jp711415g
    [13] RICHTER M, FAIT M J G, ECKELT R, SCHREIR E, SCHNEIDER M, POHL M M, FRICKE R. Oxidative gas phase carbonylation of methanol to dimethyl carbonate over chloride-free Cu-impregnated zeolite Y catalysts at elevated pressure[J]. Appl Catal B: Environ,2007,73(3/4):269−281. doi: 10.1016/j.apcatb.2006.11.015
    [14] RICHTER M, FAIT M, ECKELT R, SCHNEIDER M, RADNIK J, HEIDEMANN D, FRICKE R. Gas-phase carbonylation of methanol to dimethyl carbonate on chloride-free Cu-precipitated zeolite Y at normal pressure[J]. J Catal,2007,245(1):11−24. doi: 10.1016/j.jcat.2006.09.009
    [15] ENGELDINGER J, DOMKE C, RICHTER M, BENTRUP U. Elucidating the role of Cu species in the oxidative carbonylation of methanol to dimethyl carbonate on CuY: An in situ spectroscopic and catalytic study[J]. Appl Catal A: Gen,2010,382(2):303−311. doi: 10.1016/j.apcata.2010.05.009
    [16] ENGELDINGER J, RICHTER M, BENTRUP U. Mechanistic investigations on dimethyl carbonate formation by oxidative carbonylation of methanol over a CuY zeolite: an operando SSITKA/DRIFTS/MS study[J]. Phys Chem Chem Phys,2012,14(7):2183−2191. doi: 10.1039/C1CP23361K
    [17] 王玉春, 郑华艳, 刘斌, 张国强, 李忠. 固相反应制备无氯CuY催化剂及其催化氧化羰基化——固相反应温度和铜负载量的影响[J]. 高等学校化学学报,2015,36(12):2540−2549. doi: 10.7503/cjcu20150285

    WANG Yu-chun, ZHENG Hua-yan, LIU Bin, ZHANG Guo-qiang, LI Zhong. Chloride-free CuY catalyst prepared by solid state reaction for oxidative carbonylation of methanol—effect of solid state reactive temperature and copper loading[J]. Chem J Chin Univ,2015,36(12):2540−2549. doi: 10.7503/cjcu20150285
    [18] 王瑞玉, 李忠. CuNaY分子筛的制备及其催化甲醇氧化羰基化[J]. 燃料化学学报,2013,41(11):1361−1366.

    WANG Rui-yu, LI Zhong. Preparation and catalytic activity of CuNaY zeolite in oxidative carbonylation of methanol[J]. J Fuel Chem Technol,2013,41(11):1361−1366.
    [19] YAO J, HE Y, ZENG Y, FENG X, FAN J, KOMIYAMA S, YONG X, ZHANG W, ZHAO T, GUO Z, PENG X, YANG G, TSUBAKI N. Ammonia pools in zeolites for direct fabrication of catalytic centers[J]. Nat Commun,2022,13(1):931. doi: 10.1038/s41467-022-28613-0
    [20] ZHANG R, XU S, RAJA D, KHUSNI N B, LIU J, ZHANG J, ABDULRIDHA S, XIANG H, JIANG S, GUAN Y, JIAO Y, FAN X. On the effect of mesoporosity of FAU Y zeolites in the liquid-phase catalysis[J]. Microporous Mesoporous Mater,2019,278:297−306. doi: 10.1016/j.micromeso.2018.12.003
    [21] DOS SANTOS M B, VIANNA K C, PASTORE H O, ANDRADE H M C, MASCARENHAS A J S. Studies on the synthesis of ZSM-5 by interzeolite transformation from zeolite Y without using organic structure directing agents[J]. Microporous Mesoporous Mater,2020,306:110413. doi: 10.1016/j.micromeso.2020.110413
    [22] VAN AELST J, VERBOEKEND D, PHILIPPAERTS A, NUTTENS N, KURTTEPELI M, GOBECHIYA E, HAOUAS M, SREE S P, DENAYER J F M, MARTENS J A, KIRSCHHOCK C E A, TAULELLE F, BALS S, BARON G V, JACOBS P A, SELS B F. Catalyst design by NH4OH treatment of USY zeolite[J]. Adv Funct Mater,2015,25(46):7130−7144. doi: 10.1002/adfm.201502772
    [23] SHEN B, QIN Z, GAO X, LIN F, ZHOU S, SHEN W, WANG B, ZHAO H, LIU H. Desilication by alkaline treatment and increasing the silica to alumina ratio of zeolite Y[J]. Chin J Catal,2012,33(1):152−163. doi: 10.1016/S1872-2067(10)60290-2
    [24] HAN Z, ZHOU F, ZHAO J, LIU Y, MA H, WU G. Synthesis of hierarchical GaZSM-5 zeolites by a post-treatment method and their catalytic conversion of methanol to olefins[J]. Microporous Mesoporous Mater,2020,302:110194. doi: 10.1016/j.micromeso.2020.110194
    [25] ZHAO D, TU C, HU X, ZHANG N. Notable in situ surface transformation of Cu2O nanomaterials leads to dramatic activity enhancement for CO oxidation[J]. RSC Adv,2017,7(60):37596−37603. doi: 10.1039/C7RA05950G
    [26] ZHAO J, LIU Z, SUN D. TPO-TPD study of an activated carbon-supported copper catalyst-sorbent used for catalytic dry oxidation of phenol[J]. J Catal,2004,227(2):297−303. doi: 10.1016/j.jcat.2004.07.020
    [27] LYU Y, LIU Y, HE X, XU L, LIU X, YAN Z. The regulation of Si distribution and surface acidity of SAPO-11 molecular sieve[J]. Appl Surf Sci,2018,453:350−357. doi: 10.1016/j.apsusc.2018.05.106
    [28] JIANG Q, LIU Y, DINTZER T, LUO J, PARKHOMENKO K, ROGER A C. Tuning the highly dispersed metallic Cu species via manipulating Bronsted acid sites of mesoporous aluminosilicate support for CO2 hydrogenation reactions[J]. Appl Catal B: Environ,2020,269:118804. doi: 10.1016/j.apcatb.2020.118804
    [29] HAN F, YUAN M, MINE S, SUN H, CHEN H, TOYAO T, MATSUOKA M, ZHU K, ZHANG J, WANG W. Formation of highly active superoxide sites on CuO nanoclusters encapsulated in SAPO-34 for catalytic selective ammonia oxidation[J]. ACS Catal,2019,9(11):10398−10408. doi: 10.1021/acscatal.9b02975
    [30] WANG J, HUANG Y, YU T, ZHU S, SHEN M, LI W, WANG J. The migration of Cu species over Cu-SAPO-34 and its effect on NH3 oxidation at high temperature[J]. Catal Sci Technol,2014,4(9):3004−3012. doi: 10.1039/C4CY00451E
    [31] WANG Y, ZHENG H, LI Z. Effect of $ {\rm{NH}}_4^+ $ exchange on CuY catalyst for oxidative carbonylation of methanol[J]. Chin J Catal,2016,37(8):1403−1412. doi: 10.1016/S1872-2067(16)62490-7
    [32] HAO X, YI D, SHI L, MENG X. High performance of CuY zeolite for catalyzing acetylene carbonylation and the effect of copper valence states on catalyst[J]. Chem Eng J,2016,313:663−670.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  96
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-14
  • 修回日期:  2022-05-16
  • 录用日期:  2022-05-16
  • 网络出版日期:  2022-06-09
  • 刊出日期:  2022-12-28

目录

    /

    返回文章
    返回