留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械球磨法制备NiMo催化剂及其在菲加氢中的应用

王斐 钟梅 李建 亚力昆江·吐尔逊 靳立军

王斐, 钟梅, 李建, 亚力昆江·吐尔逊, 靳立军. 机械球磨法制备NiMo催化剂及其在菲加氢中的应用[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022045
引用本文: 王斐, 钟梅, 李建, 亚力昆江·吐尔逊, 靳立军. 机械球磨法制备NiMo催化剂及其在菲加氢中的应用[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022045
WANG Fei, ZHONG Mei, LI Jian, YALKUN·Tursun, JIN Li-jun. Preparation of mesoporous Ni Mo catalyst by mechanical ball milling for hydrogenation of phenanthrene[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022045
Citation: WANG Fei, ZHONG Mei, LI Jian, YALKUN·Tursun, JIN Li-jun. Preparation of mesoporous Ni Mo catalyst by mechanical ball milling for hydrogenation of phenanthrene[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022045

机械球磨法制备NiMo催化剂及其在菲加氢中的应用

doi: 10.19906/j.cnki.JFCT.2022045
基金项目: 新疆维吾尔自治区重大科技专项(2021A01002-3);国家自然科学基金(21766035, U1903130);新疆维吾尔自治区杰出青年基金(2020Q001);中央引导地方科技发展专项资金(60012100101)
详细信息
    通讯作者:

    Tel: 13669931725, E-mail: zhongmei0504@126.com

    ljin@dlut.edu.cn

  • 中图分类号: TQ426

Preparation of mesoporous Ni Mo catalyst by mechanical ball milling for hydrogenation of phenanthrene

Funds: The project was supported by major science and technology projects in Xinjiang Uygur Autonomous Region (2021A01002-3), the National Natural Science Foundation of China (21766035, U1903130), the Outstanding youth fund of Xinjiang Uygur Autonomous Region (2020Q001), and special funds from the central government to guide local science and technology development (60012100101).
  • 摘要: 采用机械球磨法制备NiMo催化剂,通过XRD、XPS等表征其结构,探究Ni/(Ni+Mo)比对催化剂组成和结构及菲加氢性能的影响。结果表明:该法制备的催化剂活性组分Ni和Mo的分散性好,为孔径集中分布于2~10 nm的介孔催化剂。随Ni/(Ni+Mo)比增加,催化剂的比表面积和MoIV含量呈现出先增加后降低趋势,均于0.33处达到最高。适量Ni促进Mo硫化形成NiMoS活性相,过量的Ni会形成NixSy,覆盖活性位点,降低加氢活性。恒定Ni/(Ni+Mo)比为0.33,催化剂的比表面积随Ni、Mo含量增加明显降低,而MoIV含量增加。增加硫化剂硫代硫酸铵(ATS)的用量,可同时提高催化剂的比表面积和MoIV的含量。Ni/(Ni+Mo)比对菲转化率的影响表现出与催化剂中MoIV含量相一致的变化趋势,当Ni/(Ni+Mo)比为0.33时,菲转化率达最高值74.7%。在该比例下,Ni、Mo含量及S/Mo比分别增至4.8 wt.%、16 wt.%和4.5时,菲的转化率达96.5%,八氢菲和全氢菲的总选择性和产率分别为83.9 wt.%和80.9 wt.%,且菲主要从侧环进行深度加氢形成全氢菲。
  • 图  1  催化剂的XRD谱图:(a) 不同Ni/(Ni+Mo)比;(b) 恒定Ni/(Ni+Mo)比及不同S/Mo比

    Figure  1  XRD patterns of catalysts: (a) different Ni/(Ni+Mo) ratios; (b) constant Ni/(Ni+Mo) ratio and different S/Mo ratios

    图  2  元素分布图:(a) Ni1.5Mo8-0.23-3;(b) Ni2.5Mo8-0.33-3;(c) Ni3.5Mo8-0.42-3

    Figure  2  Elemental mapping images: (a) Ni1.5Mo8-0.23-3; (b) Ni2.5Mo8-0.33-3; (c) Ni3.5Mo8-0.42-3

    图  3  催化剂的N2吸/脱附等温曲线(a, b)和孔径分布曲线(c, d):(a, c)不同Ni/(Ni+Mo)比;(b, d)恒定Ni/(Ni+Mo)比及不同S/Mo比

    Figure  3  N2 adsorption-desorption isotherms (a,b) and Pore size distributions of catalysts (c, d): (a, c) different Ni/(Ni+Mo) ratios; (b, d) constant Ni/(Ni+Mo) ratio and different S/Mo ratios

    图  4  催化剂的拉曼光谱图

    Figure  4  Raman spectra of catalysts

    图  5  催化剂的HRTEM图及堆积层数分布:(a) Ni1.5Mo8-0.23-3;(b) Ni2.5Mo8-0.33-3;(c) Ni3.5Mo8-0.42-3;(d) Ni4.8Mo16-0.33-3;(e) 堆积层数分布

    Figure  5  HRTEM images and accumulation layer number distribution of catalysts: (a) Ni1.5Mo8-0.23-3; (b) Ni2.5Mo8-0.33-3; (c) Ni3.5Mo8-0.42-3; (d) Ni4.8Mo16-0.33-3; (e) accumulation layer number distribution

    图  6  XPS分峰拟合图:(a) 全谱;(b) Mo 3d;(c) S 2p;(d) Ni 2p3/2

    Figure  6  Curve-fitting of the XPS spectra: (a) full spectrum; (b) Mo 3d; (c) S 2p; (d) Ni 2p3/2

    图  7  菲的转化率及液体产物分布:(a)不同Ni/(Ni+Mo)比;(b)恒定Ni/(Ni+Mo)比及不同S/Mo比

    Figure  7  Conversion of phenanthrene and distribution of liquid products: (a) different Ni/(Ni+Mo) ratios; (b) constant Ni/(Ni+Mo) ratio and different S/Mo ratios

    图  8  Ni4.8Mo16-0.33-4.5作用下菲加氢产物选择性和收率随时间的变化规律

    Figure  8  Selectivity and yield of phenanthrene hydrogenation products under Ni4.8Mo16-0.33-4.5 reaction with time

    图  9  Ni4.8Mo16-0.33-4.5作用下菲的加氢反应路径

    Figure  9  Phenanthrene hydrogenation reaction path under the action of Ni4.8Mo16-0.33-4.5

    表  1  催化剂的孔结构特征

    Table  1  Pore structure characteristics of catalysts

    CatalystBET surface area (m2·g−1)External surface area (m2·g−1)Pore volume (cm3·g−1)Average pore size (nm)
    Ni1.5Mo8-0.23-3199.3189.00.264.6
    Ni2.0Mo8-0.29-3215.7201.50.274.4
    Ni2.5Mo8-0.33-3231.6214.20.294.4
    Ni3.0Mo8-0.38-3212.1206.30.264.2
    Ni3.5Mo8-0.42-3209.3201.10.254.1
    Ni3.6Mo12-0.33-3214.6205.60.244.4
    Ni4.2Mo14-0.33-3172.6168.90.204.1
    Ni4.8Mo16-0.33-3139.1138.50.163.8
    N5.4iMo18-0.33-3122.0121.20.133.8
    Ni6.0Mo20-0.33-3109.4107.90.113.6
    Ni4.8Mo16-0.33-4.5206.4200.50.264.3
    下载: 导出CSV

    表  2  Mo、Ni和S不同形态的原子百分比 (%)

    Table  2  Atoms percentage in different Mo, Ni and S forms (%)

    CatalystMo IVMoMoVINiMoSNi2+a①Ni2+b②S2−S22−SO42−
    Ni1.5Mo8-0.23-3 28.8 15.1 56.1 57.7 32.2 10.1 23.1 14.4 62.5
    Ni2.0Mo8-0.29-3 29.5 18.1 52.4 38.1 40.4 21.5 24.3 24.1 51.6
    Ni2.5Mo8-0.33-3 31.7 19.7 48.6 32.6 43.6 23.8 26.6 26.4 47
    Ni3.0Mo8-0.38-3 29.1 26.6 44.3 27.8 45.7 26.5 29 28 43
    Ni3.5Mo8-0.42-3 21.8 34.6 43.6 20.3 29.6 50.1 33.4 29.9 36.7
    Ni3.6Mo12-0.33-3 33.1 26.2 40.7 35.8 39.7 24.5 33.1 18.2 48.7
    Ni4.2Mo14-0.33-3 35.7 29.2 35.1 38.7 34.7 26.6 41.1 20.5 38.4
    Ni4.8Mo16-0.33-3 41.1 25.6 33.3 43.8 27.6 28.6 46.1 21.3 32.6
    Ni5.4Mo18-0.33-3 49.4 23.8 26.8 44.2 39.4 16.4 58.7 15.4 25.9
    Ni6.0Mo20-0.33-3 54.4 22.1 23.4 45.8 38.9 15.3 64.2 16.3 19.5
    Ni4.8Mo16-0.33-4.5 62.8 18.1 19.1 50.8 30.5 18.7 71.4 17.5 11.1
    ① Weak interaction between Ni and support; ② Strong interaction between Ni and support
    下载: 导出CSV
  • [1] 周卫国, 吴旭洲. 煤焦油中蒽、菲、咔唑的精制及利用[J]. 煤化工,2002,98(1):1−5. doi: 10.3969/j.issn.1005-9598.2002.01.001

    ZHOU Wei-guo, WU Xu-zhou. Refining and utilization of anthracene phenanthrene carbazole in coal tar[J]. Coal Chem Ind,2002,98(1):1−5. doi: 10.3969/j.issn.1005-9598.2002.01.001
    [2] 姚蒙正, 李悦生. 菲氧化制联苯二甲酸[J]. 燃料与化工,1986,6:47−49.

    YAO Meng-zheng, LI Yue-sheng. Oxidation of phenanthrene to produce biphenyl acid[J]. Fuels Chem,1986,6:47−49.
    [3] KHAN N, KANDASUBRAMANIAN B, ABHYANKAR C, NANDI T. Deep-hydrogenation of aviation turbine fuel over highly active and robust magneto-sensitive nanocatalyst[J]. Braz J Chem Eng,2022,22(12):1−13.
    [4] TAYLOR M J, DURNDELL L J, ISAACS M A, PARLETT C M A. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions[J]. Appl Catal B,2016,180(12):580−585.
    [5] WANG M L, QIAN X Q, XIE L Q, FANG H H, YE L M, DUAN X P. Synthesis of a Ni phyllosilicate with controlled morphology for deep hydrogenation of polycyclic aromatic hydrocarbons[J]. ACS Sustain Chem Eng,2019,7(2):1989−1997. doi: 10.1021/acssuschemeng.8b04256
    [6] Qian W H, YODA Y, HIRAI Y, ISHIHARA A, KABE T. Hydrodesulfurization of dibenzothiophene and hydrogenation of phenanthrene on alumina-supported Pt and Pd catalysts[J]. Appl Catal A,1999,184(1):81−88. doi: 10.1016/S0926-860X(99)00083-6
    [7] NAVARRO R M, PAWELEC B, TREJO J M, MARISCAL R, FIERRO J L G. Hydrogenation of aromatics on sulfur-resistant PtPd bimetallic catalysts[J]. J Catal,2000,189(1):184−194. doi: 10.1006/jcat.1999.2693
    [8] HU D, DUAN A J, XU C M, ZHENG P, LI Y Y, XIAO C K, LIU C, MENG Q, LI H P. Ni2P promotes the hydrogenation activity of naphthalene on wrinkled silica nanoparticles with tunable hierarchical pore sizes in a large range[J]. Nanoscale,2019,33(11):15519−15529.
    [9] MAMEDE A S, GIRAUDON J M, LöFBERG A, LECLERCQ L, LECLERCQ G. Hydrogenation of toluene over β-Mo2C in the presence of thiophene[J]. Appl Catal A,2002,227(1):73−82.
    [10] ZHANG D X, ZhAO J, ZHANG Y, LU X L. Catalytic hydrogenation of phenanthrene over NiMo/Al2O3 catalysts as hydrogen storage intermediate[J]. Int J Hydrogen Energy,2016,41(27):11675−11681. doi: 10.1016/j.ijhydene.2015.11.173
    [11] JEONG G, KIM C H, HUR Y G, HAN G H, LEE S H. Ni-doped MoS2 nanoparticles prepared via core–shell nanoclusters and catalytic activity for upgrading heavy oil[J]. Energy & Fuels,2018,32(9):9263−9270.
    [12] ZHANG M, YANG T, ZHAO R, LIU C G. Effect of solid-state synthesized alumina properties on the structure and catalytic performance of NiMo catalyst in hydrodesulfurization[J]. Appl Catal A,2013,468:327−333. doi: 10.1016/j.apcata.2013.09.008
    [13] QIU Z, LI Q, SHI L, LI Z Q, DING L, ZHAO L F. Effect of Ni loading and impregnation method on the hydrodenitrogenation of coal tar over Ni-Mo/γ-Al2O3[J]. Energy Sources Part A,2020,12(5):1−13.
    [14] ZHONG M, ZHAI J R, XU Y B, JIN L J, YE Y F, HU H Q, MA F Y. Catalytic cracking of coal-tar model compounds over ZrO2/Al2O3 and Ni-Ce/Al2O3 catalysts under steam atmosphere[J]. Fuel,2020,263(1):116761−116763.
    [15] HE X H, DENG Y C, ZHANG Y, HE Q, XIAO A Q, PENG M, ZHAO Y, ZHANG H, LUO R C, GAN T, JI H B, MA J. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts[J]. Cell Report,2020,1(1):100004−100016. doi: 10.1016/j.xcrm.2020.100004
    [16] 翟建荣, 张艳敏, 莫文龙, 李显, 钟梅, 马凤云. 制备方法对煤焦油模型化合物裂解催化剂Ni/Al2O3结构及性能的影响[J]. 燃料化学学报,2018,46(9):1063−1073. doi: 10.3969/j.issn.0253-2409.2018.09.005

    ZHAI Jian-rong, ZHANG Yan-ming, MO Wen-long, LI Xian, ZHONG Mei, MA Feng-yun. The effect of the preparation method on the structure and performance of the Ni/Al2O3 catalyst for coal tar model compound cracking[J]. J Fuel Chem Technol,2018,46(9):1063−1073. doi: 10.3969/j.issn.0253-2409.2018.09.005
    [17] MOONSRIKAEW W, DUANGCHAN A. Deoxygenation of pyrolysis vapor from palm fruit cake over NiMo/γ-Al2O3 catalyst: Effect of CeO2, TiO2, and ZrO2 additives[J]. J Mol Catal,2022,523:111712−11724. doi: 10.1016/j.mcat.2021.111712
    [18] GUO Z, LIN Q. Coupling reaction of CO2 and propylene oxide catalyzed by DMC with co-complexing agents incorporated via ball milling[J]. J Mol Catal A:Chem,2014,390(8):63−68.
    [19] HEIN J, HRABAR A, JENTYS A, GUTIERREZ O Y. γ-Al2O3-supported and unsupported (Ni)MoS2 for the hydrodenitrogenation of quinoline in the presence of dibenzothiophene[J]. Chem Cat Chem,2014,6(2):485−499.
    [20] LUO W Q, SHI H, SCHACHTL E, GUTIERREZ O Y, LERCHER J A. Active sites on nickel‐promoted transition‐metal sulfides that catalyze hydrogenation of aromatic compounds[J]. Angew Chem Int Ed,2018,57(44):14555−14559. doi: 10.1002/anie.201808428
    [21] LIU Q, Gao J J, Gu F N, LU Y J, LI H F, ZHONG Z Y, LIU B, XU G W, SU F B. One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation[J]. J Catal,2015,100(326):127−138.
    [22] ZHANG Z Z, YANG S Z, HU X B, XU H D, PENG H G, LIU M M, THAPALIYA B P, JIE K. Mechanochemical nonhydrolytic Sol-Gel-Strategy for the production of mesoporous multimetallic oxides[J]. Chem Mater,2019,31(15):5529−5536. doi: 10.1021/acs.chemmater.9b01244
    [23] LIU H, LI Y P, YIN C L, WU Y L, CHAI Y M, DONG D M, LI X H, LIU C G. One-pot synthesis of ordered mesoporous NiMo-Al2O3 catalysts for dibenzothiophene hydrodesulfurization[J]. Appl Catal B,2016,100(198):493−507.
    [24] GE H, LI X K, WANG J G, QIN Z F, LV Z J. Activation and hydrodesulfurization activity of MoO3/Al2O3 catalyst presulfided by ammonium thiosulfate[J]. Chin J Catal,2008,29(9):921−927. doi: 10.1016/S1872-2067(08)60074-1
    [25] LEE C G, YAN H G, BRUS L E, HEINZ T F, HONE J, RYU S. Anomalous lattice vibrations of single and few-layer MoS2[J]. ACS Nano,2010,4(5):2695−2700. doi: 10.1021/nn1003937
    [26] FRINDT R F, Single crystals of MoS2 several molecular layers thick[J]. J Appl Phys, 1966, 37(4): 1928-1929.
    [27] LI H, ZHANG Q, YAP C C R, TAY B K, EDWIN T H T, OLIVIER A. From bulk to monolayer MoS2: evolution of Raman scattering[J]. Adv Funct Mater,2012,22(7):1385−1390. doi: 10.1002/adfm.201102111
    [28] KUNHIRAMAN A K, BRADHA M, RAKKESH R A. Nickel-doped two-dimensional molybdenum disulfide for electrochemical hydrogen evolution reaction[J]. J Mater Res,2021,36(20):4141−4153. doi: 10.1557/s43578-021-00185-7
    [29] 汪佩华, 秦志峰, 吴琼笑, 李聪明, 苗茂谦, 常丽萍, 孙鹏程, 曾剑, 王立华, 谢克昌. 磷添加方式对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展,2021,40(2):890−900.

    WANG Pei-hua, QIN Zhi-feng, WU Qiong-xiao, LI Cong-ming, MIAO Mao-qian, CHANG Li-ping, SUN Peng-cheng, ZENG Jian, WANG Li-hua, XIE Ke-chang. Effect of phosphorus addition on hydrodesulfurization performance of NiMo/Al2O3 catalyst[J]. Chem Ind Eng Prog,2021,40(2):890−900.
    [30] GE H, LI X K, QIN Z F, LIANG F X, WANG J G. Effects of carbon on the sulfidation and hydrodesulfurization of CoMo hydrating catalysts[J]. Korean J Chem Eng,2009,26(2):576−581. doi: 10.1007/s11814-009-0098-6
    [31] NINH T, MASSIN L, LAURENTI D, VRINAT M. A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts[J]. Appl Catal A,2011,407(1-2):29−39. doi: 10.1016/j.apcata.2011.08.019
    [32] YU P, FANG M X, MA S, CEN J M, LUO Z Y. Quantitative evaluation of coupling effects of pore structures and metal loadings on catalytic hydrogenation of tar model reactants over sulfided NiMo/γ-Al2O3 catalysts: Role of segmented catalytic active phase volumes[J]. Fuel Process Technol,2021,224:107008−107021. doi: 10.1016/j.fuproc.2021.107008
    [33] LIU W Z, HAN W, Hu D W, NIE H, WANG Z, SUN S L, DENG Z H, YANG Q H. Promoting effects of SO42− on NiMo/γ-Al2O3 hydrodesulfurization catalyst[J]. Catal Sci Technol,2020,10(15):5218−5230. doi: 10.1039/D0CY01004A
    [34] Ge H, LI X K, Qin Z F, LV Z J, WANG J G. Highly active Mo/Al2O3 hydrodesulfurization catalyst presulfided with ammonium thiosulfate[J]. Catal Commun,2008,9(15):2578−2582. doi: 10.1016/j.catcom.2008.07.017
    [35] SCOTT C E, JOSEFINA M, PEREZ-ZURITA, LANTE A, CARBOGNANI P P. Preparation of NiMoS nanoparticles for hydrotreating[J]. Catal Today,2015,250:21−27. doi: 10.1016/j.cattod.2014.07.033
    [36] YANG J K, ZUO T J, LU J Y. Effect of preparation methods on the hydrocracking performance of NiMo/Al2O3 catalysts[J]. Chin J Chem Eng,2021,32(4):224−230.
    [37] SCHACHACHTL E, ZHONG L, KONDRATIEVA E, HEIN J, GUTIERREZ O Y. Understanding Ni promotion of MoS2/γ‐Al2O3 and its implications for the hydrogenation of phenanthrene[J]. Chem Cat Chem,2015,7(24):4118−4130.
    [38] STANISLAUS A, COOPER B H. Aromatic hydrogenation catalysis: a review[J]. Catal Rev Sci Eng,1994,36(1):75−123. doi: 10.1080/01614949408013921
    [39] 赵瑾玲, 韩清珍, 江兆潭, 温浩. 稠环芳烃基态及激发态亲核反应活性的量化研究[J]. 计算机与应用化学,2013,30(12):1435−1438. doi: 10.3969/j.issn.1001-4160.2013.12.012

    ZHAO Jin-ling, HAN Qing-zhen, JIANG Zhao-tan, WEN Hao. Quantitative study of ground state and excited State nucleophilic reactivity of polycyclic aromatic hydrocarbons[J]. Comput Appl Chem,2013,30(12):1435−1438. doi: 10.3969/j.issn.1001-4160.2013.12.012
    [40] Hu Y W, Da Z J, WANG Z J. Hydrogenation conversion of phenanthrene over dispersed Mo-based catalysts[J]. China Pet Process Petrochem Technol,2015,17:7−14.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-06
  • 录用日期:  2022-05-26
  • 修回日期:  2022-05-25
  • 网络出版日期:  2022-06-14

目录

    /

    返回文章
    返回