留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

C2链烃在热解/气化中的碳链裂解机理及速率常数计算研究

朱中旭 唐烽 金余其 陈思雨 马家瑜

朱中旭, 唐烽, 金余其, 陈思雨, 马家瑜. C2链烃在热解/气化中的碳链裂解机理及速率常数计算研究[J]. 燃料化学学报(中英文), 2023, 51(2): 251-262. doi: 10.19906/j.cnki.JFCT.2022048
引用本文: 朱中旭, 唐烽, 金余其, 陈思雨, 马家瑜. C2链烃在热解/气化中的碳链裂解机理及速率常数计算研究[J]. 燃料化学学报(中英文), 2023, 51(2): 251-262. doi: 10.19906/j.cnki.JFCT.2022048
ZHU Zhong-xu, TANG Feng, JIN Yu-qi, CHEN Si-yu, MA Jia-yu. Computational study on the chain cracking mechanisms and rate constants of C2 chain hydrocarbons during pyrolysis/gasification[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 251-262. doi: 10.19906/j.cnki.JFCT.2022048
Citation: ZHU Zhong-xu, TANG Feng, JIN Yu-qi, CHEN Si-yu, MA Jia-yu. Computational study on the chain cracking mechanisms and rate constants of C2 chain hydrocarbons during pyrolysis/gasification[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 251-262. doi: 10.19906/j.cnki.JFCT.2022048

C2链烃在热解/气化中的碳链裂解机理及速率常数计算研究

doi: 10.19906/j.cnki.JFCT.2022048
基金项目: 国家重点研发计划(2018YFD1100602)资助
详细信息
    通讯作者:

    E-mail: jinyuqi@zju.edu.cn

  • 中图分类号: O643.12

Computational study on the chain cracking mechanisms and rate constants of C2 chain hydrocarbons during pyrolysis/gasification

Funds: The project was supported by National Key R&D Program of China (2018YFD1100602)
  • 摘要: 链烃裂解在热解/气化过程中大量存在,其中,轻质链烃反应时间短并且存在多种反应路径,难以通过实验的方式对单一演变路径进行准确的检测和分析。本研究选用Gaussian及其配套软件对C2系列链烃(包括乙烷、乙烯和乙炔)的反应位点进行了预测,并对上述链烃在H/OH/O自由基及水分子作用下的碳链裂解机理进行研究。结果表明,自由基对乙烷的C原子及H原子均可发起进攻,而对于乙烯和乙炔的进攻则主要集中在C原子。在上述三种自由基中,OH自由基对不饱和烃的裂解效果最佳,而H自由基对于饱和烃的裂解效果更好,该结果反映了实际过程中水蒸气对于C2系列链烃化合物的碳链断裂具有积极作用。此外,对比乙烯和乙炔与OH自由基作用的最优路径可以发现,CH2CH2OH在低于1200 K的环境中比CH2CHO更容易裂解,而在高于1200 K的环境中则是CH2CHO裂解更易,从中可以推断出醛类基团对于温度变化的响应速率优于醇类基团。
  • FIG. 2101.  FIG. 2101.

    FIG. 2101.  FIG. 2101.

    图  1  C2链烃化合物在电子密度为0.001 a.u.等值面上的静电势(ESP)及平均局部离子化能(ALIE)分布图

    Figure  1  Distribution of electrostatic potential and average local ionization energy of C2 chain hydrocarbons on the isosurface of electron density of 0.001 a.u. ((a), (b), (c) are ESP;(d), (e), (f) are ALIE)

    图  2  乙烷在不同路径下的反应能垒变化

    Figure  2  Change of reaction energy barrier of ethane under different paths

    图  3  乙烯在不同路径下的反应能垒变化

    Figure  3  Change of reaction energy barrier of ethylene under different paths

    图  4  乙炔在不同路径下的反应能垒变化

    Figure  4  Change of reaction energy barrier of acetylene under different paths

    图  5  乙烷在不同路径下的反应速率常数

    Figure  5  Reaction rate constants of ethane under different reaction paths

    图  6  乙烯在不同路径下的反应速率常数

    Figure  6  Reaction rate constants of ethylene under different reaction paths

    图  7  乙炔在不同路径下的反应速率常数

    Figure  7  Reaction rate constants of acetylene under different reaction paths

  • [1] MARCULESCU C, CENUŞĂ V, ALEXE F. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines[J]. Waste Manage,2016,47:133−140. doi: 10.1016/j.wasman.2015.06.043
    [2] ARENA U. Process and technological aspects of municipal solid waste gasification. A review[J]. Waste Manage,2012,32(4):625−639. doi: 10.1016/j.wasman.2011.09.025
    [3] BROWN R C. The role of pyrolysis and gasification in a carbon negative economy[J]. Processes,2021,9(5):882. doi: 10.3390/pr9050882
    [4] BOGUSH A A, STEGEMANN J A, WILLIAMS R, WOOD I G. Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching[J]. Fuel,2018,211:712−725. doi: 10.1016/j.fuel.2017.09.103
    [5] SCHEFTELOWITZ M, BECKER R, THRÄN D. Improved power provision from biomass: A retrospective on the impacts of German energy policy[J]. Biomass Bioenergy,2018,111:1−12. doi: 10.1016/j.biombioe.2018.01.010
    [6] JÅSTAD E O, BOLKESJØ T F, TRØMBORG E, RØRSTAD P K. The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector[J]. Appl Energy,2020,274:115360. doi: 10.1016/j.apenergy.2020.115360
    [7] FUTAMURA S, KABASHIMA H, ANNADURAI G. Roles of CO2 and H2O as oxidants in the plasma reforming of aliphatic hydrocarbons[J]. Catal Today,2006,115(1/4):211−216. doi: 10.1016/j.cattod.2006.02.032
    [8] TANG F, CHI Y, JIN Y, ZHU Z, MA J. Gasification characteristics of a simulated waste under separate and mixed atmospheres of steam and CO2[J]. Fuel,2022,317:123527. doi: 10.1016/j.fuel.2022.123527
    [9] CHENG Y, THOW Z, WANG C. Biomass gasification with CO2 in a fluidized bed[J]. Powder Technol,2016,296:87−101. doi: 10.1016/j.powtec.2014.12.041
    [10] PINTO F, ANDRÉ R, MIRANDA M, NEVES D, VARELA F, SANTOS J. Effect of gasification agent on co-gasification of rice production wastes mixtures[J]. Fuel,2016,180:407−416. doi: 10.1016/j.fuel.2016.04.048
    [11] EBADI A G, HISORIEV H. Gasification of algal biomass (Cladophora glomerata L. ) with CO2/H2O/O2 in a circulating fluidized bed[J]. Environ Technol,2019,40(6):749−755. doi: 10.1080/09593330.2017.1406538
    [12] YOON S J, CHOI Y, LEE J. Hydrogen production from biomass tar by catalytic steam reforming[J]. Energy Convers Manage,2010,51(1):42−47. doi: 10.1016/j.enconman.2009.08.017
    [13] LOPEZ G, ARTETXE M, AMUTIO M, ALVAREZ J, BILBAO J, OLAZAR M. Recent advances in the gasification of waste plastics. A critical overview[J]. Renewable Sustainable Energy Rev,2018,82:576−596. doi: 10.1016/j.rser.2017.09.032
    [14] SIVARAMAKRISHNAN R, MICHAEL J V, RUSCIC B. High-temperature rate constants for H/D + C2H6 and C3H8[J]. Int J Chem Kinet,2012,44(3):194−205. doi: 10.1002/kin.20607
    [15] MICHAEL J V, SU M C, SUTHERLAND J W, HARDING L B, WAGNER A F. Rate constants for D + C2H4→C2H3D + H at high temperature: implications to the high pressure rate constant for H + C2H4→C2H5[J]. Proc Combust Inst,2005,30(1):965−973. doi: 10.1016/j.proci.2004.08.213
    [16] MIYOSHI A, OHMORI K, TSUCHIYA K, MATSUI H. Reaction rates of atomic oxygen with straight chain alkanes and fluoromethanes at high temperatures[J]. Chem Phys Lett,1993,204(3/4):241−247. doi: 10.1016/0009-2614(93)90003-J
    [17] MICHAEL J V. Rate constants for the reaction O + D2→OD + D by the flash photolysis-shock tube technique over the temperature range 825–2487 K: The H2 to D2 isotope effect[J]. J Chem Phys,1989,90(1):189−198. doi: 10.1063/1.456513
    [18] FETHI K, BINOD R G, MILÁN S, BÉLA V, AAMIR F. An experimental and theoretical study on the kinetic isotope effect of C2H6 and C2D6 reaction with OH[J]. Chem Phys Lett,2015,641:158−162. doi: 10.1016/j.cplett.2015.10.057
    [19] VASU S S, HONG Z, DAVIDSON D F, HANSON R K, GOLDEN D M. Shock tube/laser absorption measurements of the reaction rates of OH with ethylene and propene[J]. J Phys Chem A,2010,114(43):11529−11537. doi: 10.1021/jp106049s
    [20] 张红梅, 林枫, 任铭琪, 李金莲, 郝玉兰, 吴红军, 赵晶莹, 赵亮, 贺永殿. 小分子烃类蒸汽热裂解自由基机理模型研究方法的探讨[J]. 化工学报,2017,68(4):1423−1433.

    ZHANG Hong-mei, LIN Feng, REN Ming-qi, LI Jin-lian, HE Yu-lan, WU Hong-jun, ZHAO Jing-ying, ZHAO Liang, HE Yong-dian. Free radical models of small molecular alkane pyrolysis[J]. CIESC J,2017,68(4):1423−1433.
    [21] MANION J A, HUIE R E, LEVIN R D, JR. BURGESS D R, ORKIN V L, TSANG W, MCGIVERN W S, HUDGENS J W, KNYAZEV V D, ATKINSON D B, CHAI E, TEREZA A M, LIN C Y, ALLISON T C, MALLARD W G, WESTLEY F, HERRON J T, HAMPSON R F, FRIZZELL D H. NIST Chemical Kinetics Database[EB/OL]. https://kinetics.nist.gov/kinetics/index.jsp
    [22] RAMAZANI S. Direct-dynamics VTST study of hydrogen or deuterium abstraction and C–C bond formation or dissociation in the reactions of CH3 + CH4, CH3 + CD4, CH3D + CD3, CH3CH3 + H, and CH3CD3 + D[J]. J Chem Phys,2013,138(19):194305. doi: 10.1063/1.4803862
    [23] NGUYEN T L, VEREECKEN L, PEETERS J. Quantum chemical and theoretical kinetics study of the O(3P) + C2H2 reaction: A multistate process[J]. J Phys Chem A,2006,110(21):6696−6706. doi: 10.1021/jp055961k
    [24] DING J, ZHANG L, KELI H. Thermal rate constants of the pyrolysis of n-heptane[J]. Combust Flame,2011,158(12):2314−2324. doi: 10.1016/j.combustflame.2011.04.015
    [25] DIAMANTI A, ADJIMAN C S, PICCIONE P M, REA A M, GALINDO A. Development of predictive models of the kinetics of a hydrogen abstraction reaction combining quantum-mechanical calculations and experimental data[J]. Ind Eng Chem Res,2016,56(4):815−831.
    [26] OGLIARO F, BEARPARK M J, HEYD J J, BROTHERS E N, KUDIN K N, STAROVEROV V N, KEITH T A, KOBAYASHI R, NORMAND J, RAGHAVACHARI K[CP]. Gaussian 16, Revision C. 01, Gaussian. Inc. : Wallingford, CT, USA. 2016.
    [27] LU T, CHEN F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm[J]. J Mol Graphics Modell,2012,38:314−323. doi: 10.1016/j.jmgm.2012.07.004
    [28] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. J Comput Chem,2012,33(5):580−592. doi: 10.1002/jcc.22885
    [29] ZHANG J. Libreta: Computerized optimization and code synthesis for electron repulsionintegral evaluation[J]. J Chem Theory Comput,2018,14(2):572−587. doi: 10.1021/acs.jctc.7b00788
    [30] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. J Mol Graphics Modell,1996,14(1):33−38. doi: 10.1016/0263-7855(96)00018-5
    [31] LU T, CHEN Q. Shermo: A general code for calculating molecular thermochemistry properties[J]. Comput Theor Chem,2021,1200:113249. doi: 10.1016/j.comptc.2021.113249
    [32] 付蓉, 卢天, 陈飞武. 亲电取代反应中活性位点预测方法的比较[J]. 物理化学学报,2014,30(4):628−639. doi: 10.3866/PKU.WHXB201401211

    FU Rong, LU Tian, CHEN Fei-wu. Comparing methods for predicting the reactive site of electrophilic substitution[J]. Acta Phys-Chim Sin,2014,30(4):628−639. doi: 10.3866/PKU.WHXB201401211
    [33] BARTLETT R, MUSIA M. Coupled-cluster theory in quantum chemistry[J]. Rev Mod Phys,2007,79(1):291−352. doi: 10.1103/RevModPhys.79.291
    [34] 杨振丽. 烷基过氧自由基和芳香烃双环过氧自由基与HO2的化学反应动力学理论研究[D]. 合肥: 中国科学技术大学, 2020.

    YANG Zhen-li. A theoretical study on the chemical reaction kinetics of the alkyl peroxy radicals and aromatic bicyclic peroxy radicals with HO2 reactions[D]. Hefei: University of Science and Technology of China, 2020.
    [35] MIHÁLY K, JÜRGEN G. Approximate treatment of higher excitations in coupled-cluster theory. II. Extension to general single-determinant reference functions and improved approaches for the canonical Hartree-Fock case[J]. J Chem Phys,2008,129(14):144101. doi: 10.1063/1.2988052
    [36] BOMBLE Y J, STANTON J F, KÁLLAY M, GAUSS J. Coupled-cluster methods including noniterative corrections for quadruple excitations[J]. J Chem Phys,2005,123(5):54101. doi: 10.1063/1.1950567
    [37] DAVIDSON E R. Comment on comment on Dunning's correlation-consistent basis sets[J]. Chem Phys Lett,1996,260(3):514−518.
    [38] MERRICK J P, MORAN D, RADOM L. An evaluation of harmonic vibrational frequency scale factors[J]. J Phys Chem A,2007,111(45):11683. doi: 10.1021/jp073974n
    [39] SKODJE R T, TRUHLAR D G, GARRETT B C. Vibrationally adiabatic models for reactive tunneling[J]. J Chem Phys,1982,77(12):5955−5976. doi: 10.1063/1.443866
    [40] GONZALEZ C, SCHLEGEL H B. Reaction-path following in mass-weighted internal coordinates[J]. J Phys Chem,1990,94:5523−5527. doi: 10.1021/j100377a021
    [41] 黄罗仪, 翁约约, 黄旭慧, 王朝杰. 车前草中黄酮类成分结构和性质的理论研究[J]. 高等学校化学学报,2021,42(9):2752−2765. doi: 10.7503/cjcu20210180

    HUANG Luo-yi, WENG Yue-yue, HUANG Xu-hui, WANG Chao-jie. Theoretical study on the structures and properties of flavonoids in plantain[J]. Chem J Chin Univ,2021,42(9):2752−2765. doi: 10.7503/cjcu20210180
    [42] POLITZER P, MURRAY J S, BULAT F A. Average local ionization energy: A review[J]. J Mol Model,2010,16(11):1731−1742. doi: 10.1007/s00894-010-0709-5
    [43] 曹静思, 陈飞武. 芳香化合物亲核、亲电反应活性的理论预测和实验反应速率的相关性研究[J]. 有机化学,2016,36(10):2463−2471. doi: 10.6023/cjoc201602026

    CAO Jing-si, CHEN Fei-wu. Theoretical study on the correlation of the experimental nucleophilic and electrophilic reaction rates of aromatic compounds with the prediction results of theoretical methods[J]. Chin J Org Chem,2016,36(10):2463−2471. doi: 10.6023/cjoc201602026
    [44] 唐海飞, 颜涛, 吴梅青. 莲心碱定量分子表面分析及反应位点预测[J]. 山西卫生健康职业学院学报,2020,30(6):7−9.

    TANG Hai-fei, YAN Tao, WU Mei-qing. Quantitative molecular surface analysis and reaction site prediction of Liensinine[J]. J Shanxi H Voc Coll,2020,30(6):7−9.
    [45] YAN T, HASE W L, DOUBLEDAY C. Energetics, transition states, and intrinsic reaction coordinates for reactions associated with O(3P) processing of hydrocarbon materials[J]. J Chem Phys,2004,120(19):9253−9265. doi: 10.1063/1.1705574
    [46] GARTON D J, MINTON T K, TROYA D, PASCUAL R, SCHATZ G C. Hyperthermal reactions of O(3P) with alkanes:   observations of novel reaction pathways in crossed-beams and theoretical studies[J]. J Phys Chem A,2003,107(23):4583−4587. doi: 10.1021/jp0226026
    [47] GARTON D J, MINTON T K, HU W, SCHATZ G C. Experimental and theoretical investigations of the inelastic and reactive scattering dynamics of O(3P) collisions with ethane[J]. J Phys Chem A,2009,113(16):4722−4738. doi: 10.1021/jp900412w
    [48] SUN Y C, WANG I T, NGUYEN T L, LU H F, YANG X, MEBEL A M. A combined quantum chemistry and RRKM calculation predicts the O(1D) + C2H6 reaction can produce water molecule in a collision-free crossed molecular beam environment[J]. J Phys Chem A,2003,107:6986−6994.
    [49] NGUYEN T L, VEREECKEN L, HOU X J, NGUYEN M T, PEETERS J. Potential energy surfaces, product distributions and thermal rate coefficients of the reaction of O(3P) with C2H4(X1–Ag): A comprehensive theoretical study[J]. J Phys Chem A,2005,109:7489−7499. doi: 10.1021/jp052970k
    [50] TALOTTA F, MORISSET S, ROUGEAU N, LAUVERGNAT D, AGOSTINI F. Electronic structure and excited states of the collision reaction O(3P) + C2H4: A multiconfigurational perspective[J]. J Phys Chem A,2021,125(28):6075−6088. doi: 10.1021/acs.jpca.1c02923
    [51] TSANG W, HAMPSON R F. Chemical kinetic data base for combustion chemistry. Part I. methane and related compounds[J]. J Phys Chem Ref Data,1986,15(3):1087−1279. doi: 10.1063/1.555759
    [52] RAJAK K, MAITI B. Communications: direct dynamics study of the O((3)P)+C(2)H(2) reaction: contribution from spin nonconserving route[J]. J Chem Phys,2010,133(1):2093.
    [53] ZUO J, CHEN Q, HU X, HUA G, XIE D. Dissection of the multichannel reaction of acetylene with atomic oxygen: from the global potential energy surface to rate coefficients and branching dynamics[J]. Phys Chem Chem Phys,2019,21:1408−1416. doi: 10.1039/C8CP07084A
    [54] GE Y, GORDON M S, BATTAGLIA F, FOX R O. Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 3. Reaction rate constant calculations[J]. J Phys Chem A,2010,114(6):2384−2392. doi: 10.1021/jp911673h
    [55] YANG X, JASPER A W, KIEFER J H, TRANTER R S. The dissociation of diacetyl: a shock tube and theoretical study[J]. J Phys Chem A,2009,113(29):8318−8326. doi: 10.1021/jp903716f
    [56] OEHLSCHLAEGER M A, DA VIDSON D F, HANSON R K. High-temperature ethane and propane decomposition[J]. Proc Combust Inst,2005,30(1):1119−1127. doi: 10.1016/j.proci.2004.07.032
    [57] BACK R A. A search for a gas-phase free-radical inversion displacement reaction at a saturated carbon atom[J]. Can J Chem,2011,61(5):916−920.
    [58] HUYNH L K, PANASEWICZ S, RATKIEWICZ A, TRUONG T N. Ab initio study on the kinetics of hydrogen abstraction for the H + alkene→H2 + alkenyl reaction class[J]. J Phys Chem A,2007,111(11):2156−2165. doi: 10.1021/jp066659u
    [59] HUYNH L K, BARRIGER K, VIOLI A. Kinetics study of the OH + alkene→H2O + alkenyl reaction class[J]. J Phys Chem A,2008,112:1436−1444. doi: 10.1021/jp077028i
    [60] LI X, JASPER A W, ZÁDOR J, MILLER J A, KLIPPENSTEIN S J. Theoretical kinetics of O + C2H4[J]. Proc Combust Inst,2017,36:219−227. doi: 10.1016/j.proci.2016.06.053
    [61] DUFOUR A, MASSON E, GIRODS P, ROGAUME Y, ZOULALIAN A. Evolution of aromatic tar composition in relation to methane and ethylene from biomass pyrolysis-gasification[J]. Energy Fuels,2011,25:4182−4189. doi: 10.1021/ef200846g
    [62] DUFOUR A, VALIN S, CASTELLI P, THIERY S B, BOISSONNET G, ZOULALIAN A, GLAUDE P A. Mechanisms and kinetics of methane thermal conversion in a syngas[J]. Ing Eng Chem Res,2009,48(14):6564−6572.
    [63] WU W G, LUO Y H, YI S, ZHANG Y L, ZHAO S H, WANG Y. Nascent biomass tar evolution properties under homogeneous/heterogeneous decomposition conditions in a two-stage reactor[J]. Energy Fuels,2011,25:5394−5406. doi: 10.1021/ef2007276
    [64] MILLER J A, MELIUS C F. A theoretical analysis of the reaction between hydroxyl and acetylene[J]. Symp Combust,1989,22(1):1031−1039. doi: 10.1016/S0082-0784(89)80113-4
    [65] VANDOOREN J, TIGGELEN P. Reaction mechanisms of combustion in low pressure acetylene-oxygen flames[J]. Symp Combust,1977,16(1):1133−1144. doi: 10.1016/S0082-0784(77)80402-5
    [66] TSUBOI T, HASHIMOTO K. Shock tube study on homogeneous thermal oxidation of methanol[J]. Combust Flame,1981,42:61−76. doi: 10.1016/0010-2180(81)90142-5
  • 20221219105016_91.docx
  • 加载中
图(8)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  148
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-05-23
  • 录用日期:  2022-06-06
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2023-02-15

目录

    /

    返回文章
    返回