Computational study on the chain cracking mechanisms and rate constants of C2 chain hydrocarbons during pyrolysis/gasification
-
摘要: 链烃裂解在热解/气化过程中大量存在,其中轻质链烃反应时间短并且存在多种反应路径,难以通过试验的方式对单一演变路径进行准确的检测和分析。本文选用Gaussian及其配套软件对C2系列链烃(包括乙烷、乙烯和乙炔)的反应位点进行了预测,并对上述链烃在H/OH/O自由基及水分子作用下的碳链裂解机理进行研究。结果表明,自由基对乙烷的C原子及H原子均可发起进攻,而对于乙烯和乙炔的进攻则主要集中在C原子。在上述三种自由基中,OH自由基对不饱和烃的裂解效果最佳,而H自由基对于饱和烃的裂解效果更好,该结果反映了实际过程中水蒸气对于C2系列链烃化合物的碳链断裂具有积极作用。此外,对比乙烯和乙炔与OH自由基作用的最优路径可以发现CH2CH2OH在低于1200 K的环境中比CH2CHO更容易裂解,而在高于1200 K的环境中则是CH2CHO裂解更易,从中可以推断出醛类基团对于温度变化的响应速度优于醇类基团。Abstract: Chain hydrocarbons cracking always occurs in pyrolysis/gasification. Among them, the reaction time of light chain hydrocarbons is short and they have many reaction paths, which make it difficult to accurately detect and analyze each evolution path by experiment. In this study, Gaussian and its related software were employed to predict the reaction sites and to study the chain cracking mechanism of C2 chain hydrocarbons (including ethane, ethylene and acetylene) under the action of H/OH/O radicals or H2O. According to the results, radicals can both attack the C and H atoms of ethane, while the C atoms of ethylene and acetylene are the main attack sites. Among the above radicals, OH radical is the best for unsaturated hydrocarbons cracking, while H radical is the best for saturated hydrocarbons, showing that the steam is conducive to the cracking of C2 chain hydrocarbons in actual process. In addition, comparing the optimal path of the reaction of ethylene or acetylene with OH radical, it can be found that CH2CH2OH radicals are easier to crack than CH2CHO radicals below 1200 K, while CH2CHO radicals are easier to crack above 1200 K, inferring the better response speed of aldehyde groups for temperature than alcohol groups.
-
Key words:
- C2 hydrocarbon /
- H2O /
- radical /
- reaction site prediction /
- reaction path /
- rate constant
-
图 1 C2链烃化合物在电子密度为0.001a.u.等值面上的静电势(ESP)及平均局部离子化能(ALIE)分布图((a)、 (b)、 (c)为ESP分布;(d)、 (e)、 (f)为ALIE分布)
Figure 1 The distribution of electrostatic potential and average local ionization energy of C2 chain hydrocarbons on the isosurface of electron density of 0.001a.u. ((a), (b), (c) are ESP;(d), (e), (f) are ALIE)
-
[1] MARCULESCU C, CENUŞĂ V, ALEXE F. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines[J]. Waste Manage.,2016,47:133−140. doi: 10.1016/j.wasman.2015.06.043 [2] ARENA U. Process and technological aspects of municipal solid waste gasification. A review[J]. Waste Manage.,2012,32(4):625−639. doi: 10.1016/j.wasman.2011.09.025 [3] BROWN R C. The role of pyrolysis and gasification in a carbon negative economy[J]. Processes,2021,9(5):882. doi: 10.3390/pr9050882 [4] BOGUSH A A, STEGEMANN J A, WILLIAMS R, WOOD I G. Element speciation in UK biomass power plant residues based on composition, mineralogy, microstructure and leaching[J]. Fuel,2018,211:712−725. doi: 10.1016/j.fuel.2017.09.103 [5] SCHEFTELOWITZ M, BECKER R, THRÄN D. Improved power provision from biomass: A retrospective on the impacts of German energy policy[J]. Biomass Bioenergy,2018,111:1−12. doi: 10.1016/j.biombioe.2018.01.010 [6] JÅSTAD E O, BOLKESJØ T F, TRØMBORG E, RØRSTAD P K. The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector[J]. Appl. Energy,2020,274:115360. doi: 10.1016/j.apenergy.2020.115360 [7] FUTAMURA S, KABASHIMA H, ANNADURAI G. Roles of CO2 and H2O as oxidants in the plasma reforming of aliphatic hydrocarbons[J]. Catal. Today,2006,115(1-4):211−216. doi: 10.1016/j.cattod.2006.02.032 [8] TANG F, CHI Y, JIN Y, ZHU Z, MA J. Gasification characteristics of a simulated waste under separate and mixed atmospheres of steam and CO2[J]. Fuel,2022,317:123527. doi: 10.1016/j.fuel.2022.123527 [9] CHENG Y, THOW Z, WANG C. Biomass gasification with CO2 in a fluidized bed[J]. Powder Technol.,2016,296:87−101. doi: 10.1016/j.powtec.2014.12.041 [10] PINTO F, ANDRÉ R, MIRANDA M, NEVES D, VARELA F, SANTOS J. Effect of gasification agent on co-gasification of rice production wastes mixtures[J]. Fuel,2016,180:407−416. doi: 10.1016/j.fuel.2016.04.048 [11] EBADI A G, HISORIEV H. Gasification of algal biomass (Cladophora glomerata L. ) with CO2/H2O/O2 in a circulating fluidized bed[J]. Environ. Technol.,2019,40(6):749−755. doi: 10.1080/09593330.2017.1406538 [12] YOON S J, CHOI Y, LEE J. Hydrogen production from biomass tar by catalytic steam reforming[J]. Energy Convers. Manage.,2010,51(1):42−47. doi: 10.1016/j.enconman.2009.08.017 [13] LOPEZ G, ARTETXE M, AMUTIO M, ALVAREZ J, BILBAO J, OLAZAR M. Recent advances in the gasification of waste plastics. A critical overview[J]. Renewable Sustainable Energy Rev.,2018,82:576−596. doi: 10.1016/j.rser.2017.09.032 [14] SIVARAMAKRISHNAN R, MICHAEL J V, RUSCIC B. High-temperature rate constants for H/D + C2H6 and C3H8[J]. Int. J. Chem. Kinet.,2012,44(3):194−205. doi: 10.1002/kin.20607 [15] MICHAEL J V, SU M C, SUTHERLAND J W, HARDING L B, WAGNER A F. Rate constants for D + C2H4→C2H3D + H at high temperature: implications to the high pressure rate constant for H + C2H4→C2H5[J]. Proc. Combust. Inst.,2005,30(1):965−973. doi: 10.1016/j.proci.2004.08.213 [16] MIYOSHI A, OHMORI K, TSUCHIYA K, MATSUI H. Reaction rates of atomic oxygen with straight chain alkanes and fluoromethanes at high temperatures[J]. Chem. Phys. Lett.,1993,204(3-4):241−247. doi: 10.1016/0009-2614(93)90003-J [17] MICHAEL J V. Rate constants for the reaction O + D2→OD + D by the flash photolysis-shock tube technique over the temperature range 825–2487 K: The H2 to D2 isotope effect[J]. J. Chem. Phys.,1989,90(1):189−198. doi: 10.1063/1.456513 [18] FETHI K, BINOD R G, MILÁN S, BÉLA V, AAMIR F. An experimental and theoretical study on the kinetic isotope effect of C2H6 and C2D6 reaction with OH[J]. Chem. Phys. Lett.,2015,641:158−162. doi: 10.1016/j.cplett.2015.10.057 [19] VASU S S, HONG Z, DAVIDSON D F, HANSON R K, GOLDEN D M. Shock tube/laser absorption measurements of the reaction rates of OH with ethylene and propene[J]. J. Phys. Chem. A,2010,114(43):11529−11537. doi: 10.1021/jp106049s [20] 张红梅, 林枫, 任铭琪, 李金莲, 郝玉兰, 吴红军, 赵晶莹, 赵亮, 贺永殿. 小分子烃类蒸汽热裂解自由基机理模型研究方法的探讨[J]. 化工学报,2017,68(04):1423−1433.ZHANG Hong-mei, LIN Feng, REN Ming-qi, LI Jin-lian, HE Yu-lan, WU Hong-jun, ZHAO Jing-ying, ZHAO Liang, HE Yong-dian. Free radical models of small molecular alkane pyrolysis[J]. CIESC Journal,2017,68(04):1423−1433. [21] MANION J A, HUIE R E, LEVIN R D, JR. BURGESS D R, ORKIN V L, TSANG W, MCGIVERN W S, HUDGENS J W, KNYAZEV V D, ATKINSON D B, CHAI E, TEREZA A M, LIN C Y, ALLISON T C, MALLARD W G, WESTLEY F, HERRON J T, HAMPSON R F, FRIZZELL D H. NIST Chemical Kinetics Database[EB/OL]. https://kinetics.nist.gov/kinetics/index.jsp [22] RAMAZANI S. Direct-dynamics VTST study of hydrogen or deuterium abstraction and C–C bond formation or dissociation in the reactions of CH3 + CH4, CH3 + CD4, CH3D + CD3, CH3CH3 + H, and CH3CD3 + D[J]. J. Chem. Phys.,2013,138(19):194305. doi: 10.1063/1.4803862 [23] NGUYEN T L, VEREECKEN L, PEETERS J. Quantum chemical and theoretical kinetics study of the O(3P) + C2H2 reaction: a multistate process[J]. J. Phys. Chem. A,2006,110(21):6696−6706. doi: 10.1021/jp055961k [24] DING J, ZHANG L, KELI H. Thermal rate constants of the pyrolysis of n–Heptane[J]. Combust. Flame,2011,158(12):2314−2324. doi: 10.1016/j.combustflame.2011.04.015 [25] DIAMANTI A, ADJIMAN C S, PICCIONE P M, REA A M, GALINDO A. Development of predictive models of the kinetics of a hydrogen abstraction reaction combining quantum–mechanical calculations and experimental data[J]. I& EC Res.,2016,56(4):815−831. [26] OGLIARO F, BEARPARK M J, HEYD J J, BROTHERS E N, KUDIN K N, STAROVEROV V N, KEITH T A, KOBAYASHI R, NORMAND J, RAGHAVACHARI K. Gaussian 16, Revision C. 01, Gaussian. Inc. : Wallingford, CT, USA. 2016. [27] LU T, CHEN F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm[J]. J. Mol. Graphics Modell.,2012,38:314−323. doi: 10.1016/j.jmgm.2012.07.004 [28] LU T, CHEN F. Multiwfn: A multifunctional wavefunction analyzer[J]. J. Comput. Chem.,2012,33(5):580−592. doi: 10.1002/jcc.22885 [29] ZHANG J. Libreta: computerized optimization and code synthesis for electron repulsionintegral evaluation[J]. J. Chem. Theory Comput.,2018,14(2):572−587. doi: 10.1021/acs.jctc.7b00788 [30] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. J. Mol. Graphics Modell.,1996,14(1):33−38. doi: 10.1016/0263-7855(96)00018-5 [31] LU T, CHEN Q. Shermo: A general code for calculating molecular thermochemistry properties[J]. Comput. Theor. Chem.,2021,1200:113249. doi: 10.1016/j.comptc.2021.113249 [32] 付蓉, 卢天, 陈飞武. 亲电取代反应中活性位点预测方法的比较[J]. 物理化学学报,2014,30(04):628−639. doi: 10.3866/PKU.WHXB201401211FU Rong, LU Tian, CHEN Fei-wu. Comparing methods for predicting the reactive site of electrophilic substitution[J]. Acta Phys. -Chim. Sin.,2014,30(04):628−639. doi: 10.3866/PKU.WHXB201401211 [33] BARTLETT R, MUSIA M. Coupled-cluster theory in quantum chemistry[J]. Rev. Mod. Phys.,2007,79(1):291−352. doi: 10.1103/RevModPhys.79.291 [34] 杨振丽. 烷基过氧自由基和芳香烃双环过氧自由基与HO2的化学反应动力学理论研究[D]. 合肥: 中国科学技术大学, 2020YANG Zhen-li. A theoretical study on the chemical reaction kinetics of the alkyl peroxy radicals and aromatic bicyclic peroxy radicals with HO2 reactions[D]. Hefei: University of Science and Technology of China, 2020. [35] MIHÁLY K, JÜRGEN G. Approximate treatment of higher excitations in coupled-cluster theory. II. Extension to general single-determinant reference functions and improved approaches for the canonical Hartree-Fock case.[J]. J. Chem. Phys.,2008,129(14):144101. doi: 10.1063/1.2988052 [36] BOMBLE Y J, STANTON J F, KÁLLAY M, GAUSS J. Coupled-cluster methods including noniterative corrections for quadruple excitations[J]. J. Chem. Phys.,2005,123(5):54101. doi: 10.1063/1.1950567 [37] DAVIDSON E R. Comment on comment on Dunning's correlation-consistent basis sets[J]. Chem. Phys. Lett.,1996,260(3):514−518. [38] MERRICK J P, MORAN D, RADOM L. An evaluation of harmonic vibrational frequency scale factors[J]. J. Phys. Chem. A,2007,111(45):11683. doi: 10.1021/jp073974n [39] SKODJE R T, TRUHLAR D G, GARRETT B C. Vibrationally adiabatic models for reactive tunneling[J]. J. Chem. Phys.,1982,77(12):5955−5976. doi: 10.1063/1.443866 [40] GONZALEZ C, SCHLEGEL H B. Reaction-path following in mass-weighted internal coordinates[J]. J. Phys. Chem.,1990,94:5523−5527. doi: 10.1021/j100377a021 [41] 黄罗仪, 翁约约, 黄旭慧, 王朝杰. 车前草中黄酮类成分结构和性质的理论研究[J]. 高等学校化学学报,2021,42(9):2752−2765. doi: 10.7503/cjcu20210180HUANG Luo-yi, WENG Yue-yue, HUANG Xu-hui, WANG Chao-jie. Theoretical study on the structures and properties of flavonoids in plantain[J]. Chem. J. Chin. Univ.,2021,42(9):2752−2765. doi: 10.7503/cjcu20210180 [42] LU T, CHEN F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm[J]. J. Mol. Graphics Modell.,2012,38:314−323. doi: 10.1016/j.jmgm.2012.07.004 [43] POLITZER P, MURRAY J S, BULAT F A. Average local ionization energy: A review[J]. J. Mol. Model.,2010,16(11):1731−1742. doi: 10.1007/s00894-010-0709-5 [44] 曹静思, 陈飞武. 芳香化合物亲核、亲电反应活性的理论预测和实验反应速率的相关性研究[J]. 有机化学,2016,36(10):2463−2471. doi: 10.6023/cjoc201602026CAO Jing-si, CHEN Fei-wu. Theoretical study on the correlation of the experimental nucleophilic and electrophilic reaction rates of aromatic compounds with the prediction results of theoretical methods[J]. Chin. J. Org. Chem.,2016,36(10):2463−2471. doi: 10.6023/cjoc201602026 [45] 唐海飞, 颜涛, 吴梅青. 莲心碱定量分子表面分析及反应位点预测[J]. 山西卫生健康职业学院学报,2020,30(6):7−9.TANG Hai-fei, YAN Tao, WU Mei-qing. Quantitative molecular surface analysis and reaction site prediction of Liensinine[J]. J. Shanxi H. Voc. Coll.,2020,30(6):7−9. [46] YAN T, HASE W L, DOUBLEDAY C. Energetics, transition states, and intrinsic reaction coordinates for reactions associated with O(3P) processing of hydrocarbon materials[J]. J. Chem. Phys.,2004,120(19):9253−9265. doi: 10.1063/1.1705574 [47] GARTON D J, MINTON T K, TROYA D, PASCUAL R, SCHATZ G C. Hyperthermal reactions of O(3P) with alkanes: observations of novel reaction pathways in crossed-beams and theoretical studies[J]. J. Phys. Chem. A,2003,107(23):4583−4587. doi: 10.1021/jp0226026 [48] GARTON D J, MINTON T K, HU W, SCHATZ G C. Experimental and theoretical investigations of the inelastic and reactive scattering dynamics of O(3P) collisions with ethane[J]. J. Phys. Chem. A,2009,113(16):4722−4738. doi: 10.1021/jp900412w [49] SUN Y C, WANG I T, NGUYEN T L, LU H F, YANG X, MEBEL A M. A combined quantum chemistry and RRKM calculation predicts the O(1D) + C2H6 reaction can produce water molecule in a collision-free crossed molecular beam environment[J]. J. Phys. Chem. A,2003,107:6986−6994. [50] NGUYEN T L, VEREECKEN L, HOU X J, NGUYEN M T, PEETERS J. Potential energy surfaces, product distributions and thermal rate coefficients of the reaction of O(3P) with C2H4(X1–Ag): A comprehensive theoretical study[J]. J. Phys. Chem. A,2005,109:7489−7499. doi: 10.1021/jp052970k [51] TALOTTA F, MORISSET S, ROUGEAU N, LAUVERGNAT D, AGOSTINI F. Electronic structure and excited states of the collision reaction O(3P) + C2H4: A multiconfigurational perspective[J]. J. Phys. Chem. A,2021,125(28):6075−6088. doi: 10.1021/acs.jpca.1c02923 [52] TSANG W, HAMPSON R F. Chemical kinetic data base for combustion chemistry. Part I. methane and related compounds[J]. J. Phys. Chem. Ref. Data,1986,15(3):1087−1279. doi: 10.1063/1.555759 [53] NGUYEN T L, VEREECKEN L, PEETERS J. Quantum chemical and theoretical kinetics study of the O(3P) + C2H2 reaction: A multistate process[J]. J. Phys. Chem. A,2006,110(21):6696−6706. doi: 10.1021/jp055961k [54] RAJAK K, MAITI B. Communications: direct dynamics study of the O((3)P)+C(2)H(2) reaction: contribution from spin nonconserving route[J]. J. Chem. Phys.,2010,133(1):2093. [55] ZUO J, CHEN Q, HU X, HUA G, XIE D. Dissection of the multichannel reaction of acetylene with atomic oxygen: from the global potential energy surface to rate coefficients and branching dynamics[J]. Phys. Chem. Chem. Phys.,2019,21:1408−1416. doi: 10.1039/C8CP07084A [56] GE Y, GORDON M S, BATTAGLIA F, FOX R O. Theoretical study of the pyrolysis of methyltrichlorosilane in the gas phase. 3. Reaction rate constant calculations[J]. J. Phys. Chem. A.,2010,114(6):2384−2392. doi: 10.1021/jp911673h [57] YANG X, JASPER A W, KIEFER J H, TRANTER R S. The dissociation of diacetyl: a shock tube and theoretical study[J]. J. Phys. Chem. A,2009,113(29):8318−8326. doi: 10.1021/jp903716f [58] OEHLSCHLAEGER M A, DA VIDSON D F, HANSON R K. High-temperature ethane and propane decomposition[J]. Proc. Combust. Inst.,2005,30(1):1119−1127. doi: 10.1016/j.proci.2004.07.032 [59] BACK R A. A search for a gas-phase free-radical inversion displacement reaction at a saturated carbon atom[J]. Can. J. Chem.,2011,61(5):916−920. [60] HUYNH L K, PANASEWICZ S, RATKIEWICZ A, TRUONG T N. Ab initio study on the kinetics of hydrogen abstraction for the H + alkene→H2 + alkenyl reaction class[J]. J. Phys. Chem. A,2007,111(11):2156−2165. doi: 10.1021/jp066659u [61] HUYNH L K, BARRIGER K, VIOLI A. Kinetics study of the OH + alkene→H2O + alkenyl reaction class[J]. J. Phys. Chem. A,2008,112:1436−1444. doi: 10.1021/jp077028i [62] VASU S S, HONG Z, DAVIDSON D F, HANSON R K, GOLDEN D M. Shock tube/laser absorption measurements of the reaction rates of OH with ethylene and propene[J]. J. Phys. Chem. A,2010,114(43):11529−11537. doi: 10.1021/jp106049s [63] LI X, JASPER A W, ZÁDOR J, MILLER J A, KLIPPENSTEIN S J. Theoretical kinetics of O + C2H4[J]. Proc. Combust. Inst.,2017,36:219−227. doi: 10.1016/j.proci.2016.06.053 [64] DUFOUR A, MASSON E, GIRODS P, ROGAUME Y, ZOULALIAN A. Evolution of aromatic tar composition in relation to methane and ethylene from biomass pyrolysis-gasification[J]. Energy Fuels,2011,25:4182−4189. doi: 10.1021/ef200846g [65] DUFOUR A, VALIN S, CASTELLI P, THIERY S B, BOISSONNET G, ZOULALIAN A, GLAUDE P A. Mechanisms and kinetics of methane thermal conversion in a syngas[J]. I& EC Res.,2009,48(14):6564−6572. [66] WU W G, LUO Y H, YI S, ZHANG Y L, ZHAO S H, WANG Y. Nascent biomass tar evolution properties under homogeneous/heterogeneous decomposition conditions in a two-stage reactor[J]. Energy Fuels,2011,25:5394−5406. doi: 10.1021/ef2007276 [67] MILLER J A, MELIUS C F. A theoretical analysis of the reaction between hydroxyl and acetylene[J]. Symp. Combust.,1989,22(1):1031−1039. doi: 10.1016/S0082-0784(89)80113-4 [68] VANDOOREN J, TIGGELEN P. Reaction mechanisms of combustion in low pressure acetylene-oxygen flames[J]. Symp. Combust.,1977,16(1):1133−1144. doi: 10.1016/S0082-0784(77)80402-5 [69] TSUBOI T, HASHIMOTO K. Shock tube study on homogeneous thermal oxidation of methanol[J]. Combust. Flame,1981,42:61−76. doi: 10.1016/0010-2180(81)90142-5 -