留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性凹凸棒石对高温炉内PbCl2蒸气的吸附研究:实验和理论计算

温武斌 赵磊 秦宁 李治尧 李贝贝 沈凯 张亚平

温武斌, 赵磊, 秦宁, 李治尧, 李贝贝, 沈凯, 张亚平. 改性凹凸棒石对高温炉内PbCl2蒸气的吸附研究:实验和理论计算[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022053
引用本文: 温武斌, 赵磊, 秦宁, 李治尧, 李贝贝, 沈凯, 张亚平. 改性凹凸棒石对高温炉内PbCl2蒸气的吸附研究:实验和理论计算[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022053
WEN Wu-bin, ZHAO Lei, QIN Ning, LI Zhi-yao, LI Bei-bei, SHEN Kai, ZHANG Ya-ping. Adsorption of PbCl2 vapor in high temperature furnace by modified attapulgite: Experimental and Theoretical calculations[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022053
Citation: WEN Wu-bin, ZHAO Lei, QIN Ning, LI Zhi-yao, LI Bei-bei, SHEN Kai, ZHANG Ya-ping. Adsorption of PbCl2 vapor in high temperature furnace by modified attapulgite: Experimental and Theoretical calculations[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022053

改性凹凸棒石对高温炉内PbCl2蒸气的吸附研究:实验和理论计算

doi: 10.19906/j.cnki.JFCT.2022053
基金项目: 国家重点研发计划项目(2020YFC1908704)资助.
详细信息
    通讯作者:

    E-mail: amflora@seu.edu.cn

  • 中图分类号: X705

Adsorption of PbCl2 vapor in high temperature furnace by modified attapulgite: Experimental and Theoretical calculations

Funds: Supported by the National Key R&D Program of China (2020YFC1908704).
More Information
    Corresponding author: E-mail: amflora@seu.edu.cn
  • 摘要: 通过酸活化和负载磁性纳米铁氧体复合改性方式获得改性凹凸棒石,探究其在不同烟气氛围中吸附炉内半挥发性重金属PbCl2蒸气的适用性,结合FTIR、BET和XRD等表征手段以及DFT理论计算深入探究其对PbCl2蒸气的吸附机理。结果表明酸活化通过分解原矿中杂质提高表面活性位点占比,复合改性后铁基氧化物与凹凸棒石晶格氧形成的双活性吸附位点显著其PbCl2吸附容量,质量比为1∶2的Fe/HP2样品吸附容量最高达67.62(mg PbCl2/g吸附剂)。当高温烟气中含有O2、SO2和少量H2O时,会提升复合改性凹凸棒石的PbCl2吸附容量。此外,DFT理论计算表明H2O、O2、SO2和PbCl2在ATT(110)表面均发生化学吸附,同时证明了H2O通过共吸附作用促进PbCl2在ATT(110)和Fe/ATT(110)表面的吸附。PbCl2在H2O分子形成的吸附氧位点的吸附弱于在晶格氧位点的吸附,在Fe/ATT(110)表面会优先与晶格氧位点和铁氧化物团簇中氧位点双活性位点通过强相互作用成键。
  • 图  1  气态PbCl2吸附测试实验系统示意图

    Figure  1  Schematic diagram of gaseous PbCl2 adsorption test experimental system

    图  2  不同烟气氛围中改性凹凸棒石吸附剂对PbCl2的吸附容量

    Figure  2  Adsorption capacity of modified attapulgite adsorbents for PbCl2 in different flue gas atmospheres

    图  3  不同水含量下吸附剂对PbCl2蒸气的吸附容量(a)和形态分布(b)

    Figure  3  (a) Adsorption capacity and (b) Morphological distribution of adsorbent to PbCl2 vapor under different water content

    图  4  二氧化硫存在时吸附剂对PbCl2蒸气的吸附容量(a)和形态分布(b)

    Figure  4  (a) Adsorption capacity and (b) Morphological distribution of adsorbent on PbCl2 vapor in the presence of sulfur dioxide

    图  5  改性凹凸棒石的氮吸附等温线(左)和利用BJH模型得到了孔径分布图(右)

    Figure  5  Nitrogen adsorption isotherms of the modified attapulgite (left) and the pore size distribution pattern obtained using BJH model (right)

    图  6  改性凹凸棒石的SEM图。(a)HP,(b)Fe/HP2,(c)Fe/HP2-吸附后元素分布的EDS谱图,(d-i)Fe/HP2-吸附后的元素mapping图

    Figure  6  SEM images of modified Fe-rich palygorskite. (a) HP, (b)Fe/HP2, (c) EDS spectrum of complete element distribution of Fe/HP2-ad, (d-i) images of element sensitive of Fe/HP2-ad

    图  7  (a)改性前后凹凸棒石的FTIR;(b)不同比例铁负载HP的FTIR和(c)改性凹凸棒石的XRD

    Figure  7  (a) FTIR of attapulgite before and after modification; (b) FTIR and (c) XRD of modified attapulgite for different ratios of Fe loaded HP

    图  8  (a)ATT(110)和(b)Fe/ATT(110)吸附模型的三视图;(c)ATT(110)结构的电荷密度差分图;(d)ATT(110)表面上的晶格氧位点(绿框:重复单元;蓝框:测试位点)

    Figure  8  (a) Three views of ATT(110) and (b) Fe/ATT(110) adsorption models; (c) charge density differential distribution of ATT(110) structure; (d) lattice oxygen sites on the surface of ATT(110) (green box: repeat unit; blue box: test sites)

    图  9  气体分子在吸附剂表面结构上的弛豫吸附构型和投影态密度

    Figure  9  Optimized adsorption conformation and projected density of states (PDOS) of gas molecules on the adsorbent surface structure

    图  10  H2O和PbCl2在(a)ATT(110)表面和(b)Fe/ATT(110)表面的共吸附和能垒

    Figure  10  Co-adsorption and energy barrier of H2O and PbCl2 on the surface of (a) ATT(110) and (b) Fe/ATT(110)

    表  1  吸附剂组成成分分析

    Table  1  Analysis of the composition of the adsorbents

    SamplesContent (wt%)
    SiO2Al2O3Na2OFe2O3TiO2MgOCaOK2OP2O5
    Kaolinite49.52139.9120.0630.9240.6100.3500.0601.8200.089
    Attapulgite62.94214.2746.0645.0991.2651.2521.1170.8480.139
    下载: 导出CSV

    表  2  改性吸附剂的物理化学性质

    Table  2  Physicochemical characteristics of Modified adsorbents.

    SamplesSpecific surface area
    (m²/g)
    Pore volume
    (cm³/g)
    Mean pore size
    (nm)
    P38.19410.0465925.4531
    HP114.07620.1091964.5113
    Fe/HP476.01690.1696139.9182
    Fe/HP364.40170.15631310.3605
    Fe/HP264.24340.20630912.9872
    Fe/HP143.24120.16349815.3436
    下载: 导出CSV

    表  3  ATT(110)表面吸附气体分子的吸附能(Eads)和活性位点

    Table  3  Adsorption energies (Eads) and active sites of ATT(110) adsorbed gas molecules

    Adsorption energy
    (eV)
    Adsorption site
    O3C−1O3C−2O3C−3O2C−1OC−1OC−2
    H2O (g)−2.906−2.420−1.482−2.231−3.962−3.885
    O2 (g)−2.404−2.213−2.191−2.398−2.821−2.911
    PbCl2 (g)−2.854−2.378−2.211−3.063−3.327−3.378
    SO2 (g)−0.233−2.510−2.589−2.491−3.969−3.998
    下载: 导出CSV
  • [1] ZHANG J, HUANG X, CHEN Y, LUO B, LUO J, ZHANG W, RAO Z, YANG F. Characterization of lead-containing atmospheric particles in a typical basin city of China: Seasonal variations, potential source areas, and responses to fireworks[J]. Sci. Total Environ.,2019,661:354−363. doi: 10.1016/j.scitotenv.2019.01.079
    [2] AWUAL M R, ISLAM A, HASAN M M, RAHMAN M M, ASIRI A M, KHALEQUE M A, SHEIKH M C. Introducing an alternate conjugated material for enhanced lead (II) capturing from wastewater[J]. J. Clean. Prod.,2019,224:920−929. doi: 10.1016/j.jclepro.2019.03.241
    [3] GEORGE A, SHEN B, KANG D, YANG J, LUO J. Emission control strategies of hazardous trace elements from coal-fired power plants in China[J]. J. Environ. Sci. -China.,2020,93:66−90. doi: 10.1016/j.jes.2020.02.025
    [4] YU S, ZHANG C, MA L, TAN P, FANG Q, CHEN G. Deep insight into the effect of NaCl/HCl/SO2/CO2 in simulated flue gas on gas-phase arsenic adsorption over mineral oxide sorbents[J]. J. Hazard. Mater.,2021,403:123617. doi: 10.1016/j.jhazmat.2020.123617
    [5] YU S, ZHANG C, MA L, TAN P, FANG Q, CHEN G. Geochemical mechanism of lead vapors over fly ash cenospheres in simulated flue gas[J]. Fuel.,2021,285:119274. doi: 10.1016/j.fuel.2020.119274
    [6] WENDT J O, LEE S J. High-temperature sorbents for Hg, Cd, Pb, and other trace metals: Mechanisms and applications[J]. Fuel.,2010,89(4):894−903. doi: 10.1016/j.fuel.2009.01.028
    [7] XU M, YAN R, ZHENG C, QIAO Y, HAN J, SHENG C. Status of trace element emission in a coal combustion process: a review[J]. Fuel Process. Technol.,2004,85(2-3):215−237. doi: 10.1016/S0378-3820(03)00174-7
    [8] WANG J, ZHANG Y, WANG T, XU H, PAN W. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant[J]. Chem. Eng. J.,2020,380:122561. doi: 10.1016/j.cej.2019.122561
    [9] ZHA J, HUANG Y, CLOUGH P T, XIA Z, ZHU Z, FAN C, YU M, YAN Y, CHENG H. Green production of a novel sorbent from kaolin for capturing gaseous PbCl2 in a furnace[J]. J. Hazard. Mater.,2021,404:124045. doi: 10.1016/j.jhazmat.2020.124045
    [10] XU L, LIU Y, WANG J, TANG Y, ZHANG Z. Selective adsorption of Pb2 + and Cu2 + on amino-modified attapulgite: kinetic, thermal dynamic and DFT studies[J]. J. Hazard. Mater.,2021,404:124140. doi: 10.1016/j.jhazmat.2020.124140
    [11] WANG H, HU W, WU Q, HUANG B, ZONG L, WANG A, SIEBECKER M G. Effectiveness evaluation of environmentally friendly stabilizers on remediation of Cd and Pb in agricultural soils by multi-scale experiments[J]. J. Clean. Prod.,2021,311:127673. doi: 10.1016/j.jclepro.2021.127673
    [12] XU Y, LIU X, WANG H, ZENG X, ZHANG Y, HAN J, XU M, PAN S. Influences of in-furnace kaolin addition on the formation and emission characteristics of PM2.5 in a 1000 MW coal-fired power station[J]. Environ. Sci. Technol.,2018,52(15):8718−8724. doi: 10.1021/acs.est.8b02251
    [13] LIU J, ZENG J, SUN S, HUANG S, KUO J, CHEN N. Combined effects of FeCl3 and CaO conditioning on SO2, HCl and heavy metals emissions during the DDSS incineration[J]. Chem. Eng. J.,2016,299:449−458. doi: 10.1016/j.cej.2016.04.132
    [14] WANG X, HUANG Y, PAN Z, WANG Y, LIU C. Theoretical investigation of lead vapor adsorption on kaolinite surfaces with DFT calculations[J]. J. Hazard. Mater.,2015,295:43−54. doi: 10.1016/j.jhazmat.2015.03.020
    [15] ZHANG Y, LIU X, XU Y, SUN W, XU M. Investigation of reducing ultrafine particulate matter formation by adding modified montmorillonite during coal combustion[J]. Fuel Process. Technol.,2017,158:264−271. doi: 10.1016/j.fuproc.2017.01.019
    [16] ZHANG X, LIU H, XING H, LI H, HU H, LI A, YAO H. Improved sodium adsorption by modified kaolinite at high temperature using intercalation-exfoliation method[J]. Fuel.,2017,191:198−203. doi: 10.1016/j.fuel.2016.11.067
    [17] YU S, ZHANG C, ZHANG X, LI X, WEI B, TAN P, FANG Q, CHEN G, XIA J. Release and transformation characteristics of Na/Ca/S compounds of Zhundong coal during combustion/CO2 gasification[J]. J. Energy Inst.,2020,93(2):752−765. doi: 10.1016/j.joei.2019.05.007
    [18] YU S, ZHANG C, YUAN C, XU H, MA L, FANG Q, CHEN G. Investigation on the influence of sulfur and chlorine on the initial deposition/fouling characteristics of a high-alkali coal[J]. Fuel Process. Technol.,2020,198:106234. doi: 10.1016/j.fuproc.2019.106234
    [19] YU S, ZHANG C, MA L, FANG Q, CHEN G. Insight into As2O3 adsorption characteristics by mineral oxide sorbents: Experimental and DFT study[J]. Chem. Eng. J.,2021,420:127593. doi: 10.1016/j.cej.2020.127593
    [20] NOWAK B, ROCHA S F, ASCHENBRENNER P, RECHBERGER H, WINTER F. Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: Influence of the chloride type[J]. Chem. Eng. J.,2012,179:178−185. doi: 10.1016/j.cej.2011.10.077
    [21] LIU T, XUE L, GUO X, HUANG Y, ZHENG C. DFT and experimental study on the mechanism of elemental mercury capture in the presence of HCl on α-Fe2O3 (001)[J]. Environ. Sci. Technol.,2016,50(9):4863−4868. doi: 10.1021/acs.est.5b06340
    [22] WANG X, HUANG Y, ZHONG Z, PAN Z, LIU C. Theoretical investigation of cadmium vapor adsorption on kaolinite surfaces with DFT calculations[J]. Fuel.,2016,166:333−339. doi: 10.1016/j.fuel.2015.11.004
    [23] YU S, ZHANG C, MA L, FANG Q, CHEN G. Experimental and DFT studies on the characteristics of PbO/PbCl2 adsorption by Si/Al-based sorbents in the simulated flue gas[J]. J. Hazard. Mater.,2021,407:124742. doi: 10.1016/j.jhazmat.2020.124742
    [24] XU Y, LIU X, WANG H, ZHANG Y, QI J, XU M. Investigation of simultaneously reducing the emission of ultrafine particulate matter and heavy metals by adding modified attapulgite during coal combustion[J]. Energ. Fuel.,2018,33(2):1518−1526.
    [25] WANG X, HUANG Y, ZHONG Z, YAN Y, NIU M, WANG Y. Control of inhalable particulate lead emission from incinerator using kaolin in two addition modes[J]. Fuel Process. Technol.,2014,119:228−235. doi: 10.1016/j.fuproc.2013.11.012
    [26] CHENG H, HUANG Y, ZHU Z, DONG L, ZHA J, YU M. Enhanced PbCl2 adsorption capacity of modified kaolin in the furnace using a combined method of thermal pre-activation and acid impregnation[J]. Chem. Eng. J.,2021,414:128672. doi: 10.1016/j.cej.2021.128672
    [27] WANG L, SHI Y, YAO D, PAN H, HOU H, CHEN J, CRITTENDEN J C. Cd complexation with mercapto-functionalized attapulgite (MATP): adsorption and DFT study[J]. Chem. Eng. J.,2019,366:569−576. doi: 10.1016/j.cej.2019.02.114
    [28] POST J E, HEANEY P J. Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of palygorskite[J]. Am. Mineral.,2008,93(4):667−675. doi: 10.2138/am.2008.2590
    [29] ZHAO L, SHEN K, LI B, ZHANG Y, ZHANG S, HONG Y, ZHANG J, LI Z. Exploration of novel high-temperature heavy metals adsorbent for sludge incineration process: experiments and theoretical calculations[J]. J. Environ. Chem. Eng.,2022,107755.
    [30] ZHANG W, QIAN L, CHEN Y, OUYANG D, HAN L, SHANG X, LI J, GU M, CHEN M. Nanoscale zero-valent iron supported by attapulgite produced at different acid modification: Synthesis mechanism and the role of silicon on Cr (VI) removal[J]. Chemosphere.,2021,267:129183. doi: 10.1016/j.chemosphere.2020.129183
    [31] ZHANG T, WANG W, ZHAO Y, BAI H, WEN T, KANG S, SONG G, SONG S, KOMARNENI S. Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites[J]. Chem. Eng. J.,2021,420:127574. doi: 10.1016/j.cej.2020.127574
    [32] LIU Y, LIU P, SU Z, LI F, WEN F. Attapulgite-Fe3O4 magnetic nanoparticles via co-precipitation technique[J]. Appl. Surf. Sci. 2008, 255(5, Part 1): 2020-2025.
    [33] PAN J, XU L, DAI J, LI X, HANG H, HUO P, LI C, YAN Y. Magnetic molecularly imprinted polymers based on attapulgite/Fe3O4 particles for the selective recognition of 2, 4-dichlorophenol[J]. Chem. Eng. J.,2011,174(1):68−75. doi: 10.1016/j.cej.2011.08.046
    [34] ZHU L, GUO J, LIU P, ZHAO S. Novel strategy for palygorskite/poly (acrylic acid) nanocomposite hydrogels from bi-functionalized palygorskite nanorods as easily separable adsorbent for cationic basic dye[J]. Appl. Clay Sci.,2016,121:29−35.
    [35] LIU Y, LIU P, SU Z, LI F, WEN F. Attapulgite-Fe3O4 magnetic nanoparticles via co-precipitation technique[J]. Appl. Surf. Sci.,2008,255(5):2020−2025. doi: 10.1016/j.apsusc.2008.06.193
    [36] TANG J, MU B, ZONG L, WANG A. One-step synthesis of magnetic attapulgite/carbon supported NiFe-LDHs by hydrothermal process of spent bleaching earth for pollutants removal[J]. J. Clean. Prod.,2018,172:673−685. doi: 10.1016/j.jclepro.2017.10.181
    [37] LIU J, ZHANG J, XING L, WANG D, WANG L, XIAO H, KE J. Magnetic Fe3O4/attapulgite hybrids for Cd (II) adsorption: performance, mechanism and recovery[J]. J. Hazard. Mater.,2021,412:125237. doi: 10.1016/j.jhazmat.2021.125237
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-06-23
  • 网络出版日期:  2022-07-11

目录

    /

    返回文章
    返回