留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成气一步法制备低碳烯烃和液体燃料催化剂研究进展

刘赛赛 姚金刚 陈冠益 易维明 颜蓓蓓 刘静 张庆文 朱磊

刘赛赛, 姚金刚, 陈冠益, 易维明, 颜蓓蓓, 刘静, 张庆文, 朱磊. 合成气一步法制备低碳烯烃和液体燃料催化剂研究进展[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022055
引用本文: 刘赛赛, 姚金刚, 陈冠益, 易维明, 颜蓓蓓, 刘静, 张庆文, 朱磊. 合成气一步法制备低碳烯烃和液体燃料催化剂研究进展[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022055
LIU Sai-sai, YAO Jin-gang, CHEN Guan-yi, YI Wei-ming, YAN Bei-bei, LIU Jing, ZHANG Qing-wen, ZHU Lei. One-step catalyst for the preparation of light olefins and liquid fuels from syngas[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022055
Citation: LIU Sai-sai, YAO Jin-gang, CHEN Guan-yi, YI Wei-ming, YAN Bei-bei, LIU Jing, ZHANG Qing-wen, ZHU Lei. One-step catalyst for the preparation of light olefins and liquid fuels from syngas[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022055

合成气一步法制备低碳烯烃和液体燃料催化剂研究进展

doi: 10.19906/j.cnki.JFCT.2022055
基金项目: 山东省自然科学基金(ZR2020QE205),国家自然科学基金(52006129,51906129),广东省新能源和可再生能源研究开发与应用重点实验室(E039kf0701,E239kf0401)资助
详细信息
    通讯作者:

    Tel:15695431959,E-mail: yaojingang@sdut.edu.cn

    ljing815@tju.edu.cn

  • 中图分类号: O643.3

One-step catalyst for the preparation of light olefins and liquid fuels from syngas

Funds: The project was supported by the Shandong Provincial Natural Science Foundation (ZR2020QE205), National Natural Science Foundation of China (52006129 and 51906129) and Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development (E039kf0701 and E239kf0401).
  • 摘要: 以合成气作为平台化合物一步法制备低碳烯烃和液体燃料是有效利用碳资源的重要路径,具备流程短,能耗低的特点,有着良好的工业应用前景。合成气一步法直接转化制备低碳烯烃和液体燃料包括2种工艺路线:费托合成路线和双功能催化路线。本文简述了两种路线反应机理,重点阐述了费托合成路线中采用添加助剂和惰性载体对铁基和钴基催化剂的优化设计,费托金属粒径、反应条件、催化剂界面结构对催化剂性能和反应过程的影响。详细解析了双功能催化路线中,一氧化碳活化组分和酸性分子筛的选择、金属氧化物粒径与元素比例、分子筛酸度与孔径大小以及一氧化碳活化组分和酸性分子筛的耦合方式对于催化剂性能的影响。总结了两种路线所具备的优势和面临的挑战,并对未来高效催化剂的发展方向进行了展望。
  • 图  1  合成气转化制备低碳烯烃和液体燃料示意图

    Figure  1  Schematic diagram of syngas conversion to prepare light olefin and liquid fuel

    图  2  合成气经由二甲醚制汽油串联反应器[7]

    Figure  2  Syngas to gasoline via dimethyl ether tandem reactor

    图  3  碳化物机理图[14]

    Figure  3  Carbide mechanism diagram

    图  4  ASF分布图[5]

    Figure  4  ASF distribution

    图  5  不同Zn-ZrO2比例催化剂CO转化率及产物选择性[80]

    Figure  5  CO conversion and product selectivity of different Zn-ZrO2 ratio catalysts

    图  6  Brønsted酸性位点密度对CO转化率及产物选择性的影响[80]

    Figure  6  Effect of Brønsted acidic site density on CO conversion and product selectivity

    图  7  两种组分邻近程度对反应的影响[80]

    Figure  7  Effect of the degree of contact between the two components on the reaction

    图  8  核壳结构催化剂[89]

    Figure  8  Core-shell structure catalyst

    表  1  费托合成反应

    Table  1  Fischer-Tropsch synthesis reaction

    Reaction typeReaction nameReaction equation
    Main reactionParaffin formation$ nCO + \left(2n + 1\right){H}_{2}\to {C}_{n}{H}_{2n + 2} + n{H}_{2}O $
    Olefin formation$ nCO + 2n{H}_{2}\to {C}_{n}{H}_{2n} + n{H}_{2}O $
    Water-gas shift reaction$ CO + {H}_{2}O\rightleftharpoons C{O}_{2} + {H}_{2} $
    Side reactionAlcohol formation$ nCO + 2n{H}_{2}\to {C}_{n}{H}_{2n + 1}O + \left(n + 1\right){H}_{2}O $
    Boudard reaction$ 2CO\rightleftharpoons C + C{O}_{2} $
    下载: 导出CSV

    表  2  不同CO活化组分与酸性分子筛相结合的双功能催化剂

    Table  2  Bifunctional catalysts with different CO activated components combined with acidic molecular sieves

    CO activation componentsZeoliteCO conv./%Selectivity of hydrocarbonso[c%]References
    CH4C2=–C4=C20–C40C5 +
    Rumeso-ZSM-529.6a5.979.0[69]
    Comeso-ZSM-543.0a7.770.0[70]
    FeZSM-548.0a27.051.0[71]
    CoZSM-529.0b15.053.0[72]
    MnOxSAPO-348.5c2.079.212.9[73]
    ZnCrOxSAPO-3417.0d2.080.014.04.0[74]
    Zn-CrSAPO-3430.0e16.038.045.0[71]
    Zn-Al2O3SAPO-344.5f10.477.012.60[72]
    Zn-Cr2O3SAPO-341.8f16.037.246.80[72]
    Zn-ZrO2SAPO-345.3f30.211.258.60[72]
    Zn-CeO2SAPO-342.1f34.455.89.80[72]
    ZnO-ZrO2SAPO-347.0g4.069.025.02.0[79]
    ZnGa2O4SAPO-3430.0h5.077.017.02.0[80]
    Mn-GaSAPO-3414.0i2.088.08.02.0[81]
    ZnxCe2−yZryO4SAPO-346.0j5.083.04.09.0[82]
    ZnCrOxMOR26.0k1.091.04.05.0[77]
    ZnAl2O4MOR10.0l5.077.012.06.0[83]
    ZrO2ZSM-512.5m2.016.06.076.0[70]
    Zn-ZrZSM-536.0m1.636.410.052.0[70]
    Cr2O3-ZnOZSM-563.0n4.056.0[70]
    [a]Reaction conditions:H2/CO=1.0,360 ℃,2.0 MPa,GHSV=2400 mL h−1 gcat−1[b]Reaction conditions:H2/CO=1.0,280 ℃,2.1 MPa,GHSV=1153 mL h−1 gcat−1[c]Reaction conditions:H2/CO=2.5,400 ℃,2.5 MPa,GHSV=4800 mL h−1 gcat−1[d]Reaction conditions:H2/CO=2.5,400 ℃,2.5 MPa,GHSV=7714 mL h−1 gcat−1[e]Reaction conditions:H2/CO=1.0,400 ℃,2.0 MPa,GHSV=1125 mL h−1 gcat−1[f]Reaction conditions:H2/CO=1.0,390 ℃,4.0 MPa,GHSV=12000 mL h−1 gcat−1[g]Reaction conditions:H2/CO=1.0,400 ℃,2.0 MPa,GHSV=3600 mL h−1 gcat−1[h]Reaction conditions:H2/CO=2.0,400 ℃,3.0 MPa,GHSV=3600 mL h−1 gcat−1[i]Reaction conditions:H2/CO=2.0,400 ℃,2.5 MPa,GHSV=4875 mL h−1 gcat−1[j]Reaction conditions:H2/CO=2.0,300 ℃,1.0 MPa,GHSV=5400 mL h−1 gcat−1[k]Reaction conditions:H2/CO=1.0,360 ℃,2.0 MPa,GHSV=1600 mL h−1 gcat−1[l]Reaction conditions:H2/CO=1.0,370 ℃,3.0 MPa,GHSV=1500 mL h−1 gcat−1[m]Reaction conditions:H2/CO=2.0,430 ℃,3.0 MPa,GHSV=1500 mL h−1 gcat−1[n]Reaction conditions:H2/CO=0.5,400 ℃,4.0 MPa,GHSV=3600 mL h−1 gcat−1[o]Product obtained based on C mole calculations, excluding CO2.
    下载: 导出CSV

    表  3  不同比例金属元素与酸性分子筛相结合的双功能催化剂

    Table  3  Bifunctional catalysts with different ratios of metal elements combined with acidic molecular sieves

    Metal oxides (scale)ZeoliteCO conv./%Selectivity of hydrocarbonsc[c%]References
    CH4${\rm{C}}_2^= - {\rm{C}}_4^= $${\rm{C}}_2^0 - {\rm{C}}_4^0 $C5 +
    ZnOSAPO-343.3a43.08.14.90[75]
    Zr-Zn(1∶1)SAPO-347.5a11.037.048.03.2[75]
    Zr-Zn(2∶1)SAPO-349.5a6.063.029.02.2[75]
    Zr-Zn(4∶1)SAPO-346.8a4.269.025.02.1[75]
    ZrO2SAPO-341.0a4.090.05.51.1[75]
    ZrO2SSZ-133.9a2.080.010.08.0[80]
    Zn-ZrO2(1∶64)SSZ-1318.0b1.875.22.010.0[80]
    Zn-ZrO2(1∶32)SSZ-1321.0b2.074.04.010.0[80]
    Zn-ZrO2(1∶16)SSZ-1323.0b2.075.04.09.0[80]
    Zn-ZrO2(1∶4)SSZ-1326.0b2.066.021.011.0[80]
    Zn-ZrO2(1∶1)SSZ-1328.0b3.059.020.018.0[80]
    Zn-ZrO2(2∶1)SSZ-1328.0b4.054.026.016.0[80]
    Zn-ZrO2(4∶1)SSZ-1322.0b5.035.044.016.0[80]
    ZnOSSZ-136.0b8.024.058.010.0[80]
    [a]Reaction conditions:H2/CO=2,360 ℃,1.0 MPa,GHSV=3600 mL h−1 gcat−1[b] Reaction conditions:H2/CO=2,400 ℃,3.0 MPa,GHSV=2700 mL h−1 gcat−1[c] Product obtained based on C mole calculations, excluding CO2.
    下载: 导出CSV

    表  5  双功能催化剂中分子筛结构对合成气催化转化的影响

    Table  5  Effect of zeolite structure in bifunctional catalysts on the catalytic conversion of syngas

    CO activation
    component
    ZeoliteTopologyOrifice structureCO conv.
    /%
    CO2 selv.

    /%
    Selectivity of hydrocarbonsh[c%]References
    CH4${\rm{C}}_2^= - {\rm{C}}_4^= $${\rm{C}}_2^0 - {\rm{C}}_4^0 $C5 + ${\rm{C}}_5 - {\rm{C}}_{11}$
    CoSSZ-13CHA3D 8-MR27.4a17.571.1[83]
    CoZSM-22TON1D 10-MR5.0a32.548.5[83]
    CoZSM-11MEL3D 10-MR54.8a15.472.7[83]
    CoZSM-5MFI3D 10-MR56.7a15.671.7[83]
    CoYFAU3D12-MR50.6a15.972.3[83]
    CoMORMOR2D 8&12-MR29.5a14.376.3[83]
    Zn2MnOxZSM-35FER2D 8&10-MR23.0 b48.720.311.7[82]
    Zn2MnOxSAPO-11AEL1D 10-MR20.3b50.02.376.7[82]
    Zn2MnOxZSM-22TON1D 10-MR19.3b48.74.264.2[82]
    Zn2MnOxZSM-12MTW1D 12-MR20.7b48.52.170.2[82]
    Zn2MnOxZSM-5MFI3D 10-MR22.9b48.92.067.4[82]
    Zn2MnOxZSM-11MEL3D 10-MR22.6b48.91.863.5[82]
    Zn-ZrO2ZSM-5MFI3D 10-MR9.3 c39.01.92.913.01.0[66]
    Zn-ZrO2BetaBEA3D12-MR7.5 c41.07.513.073.01.8[66]
    Zn-ZrO2MORMOR2D 8&12-MR9.2c40.09.243.026.04.3[66]
    Zn-ZrO2SAPO-34CHA3D 8-MR7.4 c40.07.461.029.05.5[66]
    Zn-ZrO2SSZ-13CHA3D 8-MR29.0d42.02.077.018.03.0[80]
    ZnCrOxSAPO-34CHA3D 8-MR17.0e41.02.080.014.04.0[74]
    ZnCrOxMORMOR2D 8&12-MR9.0e5.089.05.50.5[73]
    ZnAl2O4SAPO-34CHA3D 8-MR6.9f33.15.577.014.5[84]
    ZnAl2O4MORMOR2D 8&12-MR10.0g44.05.277.012.0[85]
    [a]Reaction conditions:H2/CO=2.0,240 ℃,2.5 MPa,GHSV=7714 mL h−1 gcat−1[b]Reaction conditions:H2/CO=1.0,360 ℃,4.0 MPa,GHSV=1000 mL h−1 gcat−1[c]Reaction conditions:H2/CO=2.0,400 ℃,3.0 MPa,GHSV=1500 mL h−1 gcat−1[d]Reaction conditions:H2/CO=2.0,400 ℃,3.0 MPa,GHSV=2700 mL h−1 gcat−1[e]Reaction conditions:H2/CO=2.5,400 ℃,2.0 MPa,GHSV=4000 mL h−1 gcat−1[f]Reaction conditions:H2/CO=1.0,390 ℃,4.0 MPa,GHSV=12000 mL h−1 gcat−1[g]Reaction conditions:H2/CO=1.0,330 ℃,3.0 MPa,GHSV=1500 mL h−1 gcat−1[h] Product obtained based on C mole calculations, excluding CO2.
    下载: 导出CSV

    表  4  CO活化组分粒径对反应的影响

    Table  4  Effect of CO activation component particle size on the reaction

    CO activation
    components
    Particle size(nm)ZeoliteCO conv.
    /%
    CO2 selv.
    /%
    Selectivity of hydrocarbonsc[c%]References
    CH4${\rm{C}}_2^= - {\rm{C}}_4^= $${\rm{C}}_2^0 - {\rm{C}}_4^0 $C5–C9C10–C20
    Co4.9Na-meso-Y40.0a12.029.045.0[64]
    Co6.5Na-meso-Y38.0a5.027.047.0[64]
    Co8.4Na-meso-Y34.0a5.018.060.0[64]
    Co14.0Na-meso-Y39.0a5.018.552.0[64]
    Co20.0Na-meso-Y36.0a4.518.351.0[64]
    Co27.0Na-meso-Y30.0a4.018.048.0[64]
    ZnO23.0SAPO-3431.9b42.03.176.715.5[81]
    ZnO24.0SAPO-3433.2b41.03.076.515.9[81]
    ZnO25.0SAPO-3433.5b41.02.976.116.4[81]
    ZnO33.0SAPO-3429.7b41.02.675.617.4[81]
    ZnO40.0SAPO-3424.4b41.02.574.318.9[81]
    ZnO53.0SAPO-3417.4b40.02.467.024.8[81]
    ZnO62.0SAPO-3411.8b37.02.760.030.1[81]
    ZnO79.0SAPO-346.5b32.02.461.028.6[81]
    [a]Reaction conditions:Co/zeolite=0.15/1(Wt.%),H2/CO=1,230 ℃,2.0 MPa,GHSV=1800 mL h−1 gcat−1[b]Reaction conditions:ZnO/zeolite =2/1(Wt.%),H2/CO=2.5,400 ℃,4 MPa,GHSV =1600 mL h−1 gcat−1[c] Product obtained based on C mole calculations, excluding CO2.
    下载: 导出CSV
  • [1] CLAEYS M. Cobalt gets in shape[J]. Nature,2016,538(7623):44−45. doi: 10.1038/538044a
    [2] DE JONG K P. Surprised by selectivity[J]. Science,2016,351(6277):1030−1031. doi: 10.1126/science.aaf3250
    [3] KÖHNKE K, WESSEL N, ESTEBAN J, JIN J, LEITNER W, VORHOLT A J. Operando monitoring of mechanisms and deactivation of molecular catalysts[J]. Green Chem,2022,24(5):1951−1972. doi: 10.1039/D1GC04383H
    [4] DU C, LU P, TSUBAKI N. Efficient and new production methods of chemicals and liquid fuels by carbon monoxide hydrogenation: ACS Omega[Z]. 2020: 5, 49-56.
    [5] 郭海军, 张海荣, 王璨, 唐伟超, 彭芬, 熊莲. 合成气一步法直接转化制备低碳烯烃催化剂研究进展[J]. 新能源进展,2017,5(5):358−364. doi: 10.3969/j.issn.2095-560X.2017.05.006

    GUO Hai-jun, ZHANG Hai-rong, WANG Can, TANG Wei-chao, PENG Fen, XIONG Lian. Advances in catalysts for one-step direct conversion of syngas to light olefins[J]. Advances in New and Renewable Energy,2017,5(5):358−364. doi: 10.3969/j.issn.2095-560X.2017.05.006
    [6] LIU Z, NI Y, GAO M, WANG L, FANG X, LIU J, CHEN Z, WANG N, TIAN P, ZHU W, LIU, Z. Simultaneously achieving high conversion and selectivity in syngas-to-propane reaction via a dual-bed catalyst system[J]. ACS Catal,2022,12(7):3985−3994. doi: 10.1021/acscatal.1c05132
    [7] NI Y, WANG K, ZHU W, LIU Z. Realizing high conversion of syngas to gasoline-range liquid hydrocarbons on a dual-bed-mode catalyst[J]. Chem Catal,2021,1(2):383−392. doi: 10.1016/j.checat.2021.02.003
    [8] JIN E, ZHANG Y, HE L, HARRIS G H, TENG B, FAN M. Indirect coal to liquid technologies[J]. Appl Catal,2014,476:158−174. doi: 10.1016/j.apcata.2014.02.035
    [9] TAKESHITA T, YAMAJI K. Important roles of Fischer-Tropsch synfuels in the global energy future[J]. Energy Policy,2008,36(8):2773−2784. doi: 10.1016/j.enpol.2008.02.044
    [10] WILLIAMS H, GNANAMANI M K, JACOBS G, SHAFER W D, COULLIETTE D. Fischer-Tropsch synthesis: computational sensitivity modeling for series of cobalt catalysts[J]. Catalysts,2019,9(10):857. doi: 10.3390/catal9100857
    [11] ZHOU W, CHENG K, KANG J, ZHOU C, SUBRAMANIAN V, ZHANG Q, WANG Y. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels[J]. Chem Soc Rev,2019,48(12):3193−3228. doi: 10.1039/C8CS00502H
    [12] CHENG Q, TIAN Y, LYU S, ZHAO N, MA K, DING T, JIANG Z, WANG L, ZHANG J, ZHENG L, GAO F, DONG L, TSUBAKI N, LI X. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis[J]. Nat Commun,2018,9(1):3250. doi: 10.1038/s41467-018-05755-8
    [13] ZHONG L, YU F, AN Y, ZHAO Y, SUN Y, LI Z, LIN T, LIN Y, QI X, DAI Y, GU L, HU J, JIN S, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature,2016,538(7623):84−87. doi: 10.1038/nature19786
    [14] CHENG K, KANG J, KING D L, SUBRAMANIAN V, ZHOU C, ZHANG Q, WANG Y. Advances in catalysis for syngas conversion to hydrocarbons[M]. Pittsburgh: Adv Catal, 2017, 60: 125-208.
    [15] 杨晓梅, 张春, 应卫勇. F-T合成液体燃料催化剂[J]. 化工生产与技术,2005,(3):20−22. doi: 10.3969/j.issn.1006-6829.2005.03.008

    YANG Xiao-mei, ZHANG Chun, YING Wei-yong. F-T synthetic liquid fuel catalyst[J]. Chemical Production and Technology,2005,(3):20−22. doi: 10.3969/j.issn.1006-6829.2005.03.008
    [16] PAN X, JIAO F, MIAO D, BAO X. Oxide-Zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis[J]. Chem Rev,2021,121(11):6588−6609. doi: 10.1021/acs.chemrev.0c01012
    [17] 高鹏, 崔勖, 钟良枢, 孙予罕. CO/CO2加氢高选择性合成化学品和液体燃料[J]. 化工进展,2019,38(1):183−195.

    GAO Peng, CUI Xu, ZHONG Liang-shu, SUN Yu-han. CO/CO2 hydrogenation to chemicals and liquid fuels with high selectivity[J]. Chem Eng Prog,2019,38(1):183−195.
    [18] 陈建刚, 相宏伟, 李永旺, 孙予罕. 费托法合成液体燃料关键技术研究进展[J]. 化工学报,2003,54(4):516−523. doi: 10.3321/j.issn:0438-1157.2003.04.013

    CHEN Jian-gang, XIANG Hong-wei, LI Yong-wang, SUN Yu-han. Advance in key techniques of Fischer-Tropsch synthesis for liquid fuel production[J]. CIESC Journal,2003,54(4):516−523. doi: 10.3321/j.issn:0438-1157.2003.04.013
    [19] YANG C, ZHAO H, HOU Y, MA D. Fe5C2 nanoparticles: a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. JACS,2012,134(38):15814−15821. doi: 10.1021/ja305048p
    [20] LIU Q, SHANG C, LIU Z. In Situ Active Site for Fe-Catalyzed Fischer–Tropsch Synthesis: Recent Progress and Future Challenges[J]. J Phys Chem Lett,2022,13(15):3342−3352. doi: 10.1021/acs.jpclett.2c00549
    [21] ZHAO H, LIU J, YANG C, YAO S, SU H, GAO Z, DONG M, WANG J, RYKOV A, WANG J, HOU Y, LI W, MA D. Synthesis of iron-carbide nanoparticles: Identification of the active phase and mechanism of Fe-based Fischer–Tropsch synthesis[J]. CCS Chem,2021,3(11):2712−2724. doi: 10.31635/ccschem.020.202000555
    [22] TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A I, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835−838. doi: 10.1126/science.1215614
    [23] KASIPANDI S, BAE J W. Recent advances in direct synthesis of value‐added aromatic chemicals from syngas by cascade reactions over bifunctional catalysts[J]. Adv Mater,2019,31(34):1803390. doi: 10.1002/adma.201803390
    [24] TORRES GALVIS H M, KOEKEN A C, BITTER J H, DAVIDIAN T, RUITENBEEK M, DUGULAN A I, DE JONG K P. Effects of sodium and sulfur on catalytic performance of supported iron catalysts for the Fischer-Tropsch synthesis of lower olefins[J]. J Catal,2013,303:22−30. doi: 10.1016/j.jcat.2013.03.010
    [25] ZHAI P, XU C, GAO R, LIU X, LI M, LI W, FU X, JIA C, XIE J, ZHAO M, WANG X, LI Y, ZAHNG Q, WEN X, MA D. Highly tunable selectivity for syngas-derived alkenes over zinc and sodium-modulated Fe5C2 catalyst[J]. Angew Chem Int Ed,2016,128(34):10056−10061. doi: 10.1002/ange.201603556
    [26] ZHAO M, CUI Y, SUN J, ZHANG Q. Modified iron catalyst for direct synthesis of light olefin from syngas[J]. Catal Today,2018,316:142−148. doi: 10.1016/j.cattod.2018.05.018
    [27] YANG Z, ZHANG Z, LIU Y, DING X, ZHANG J, XU J, HAN Y. Tuning direct CO hydrogenation reaction over Fe-Mn bimetallic catalysts toward light olefins: effects of Mn promotion[J]. Appl Catal B,2020,285:119815.
    [28] GHOLAMI Z, GHOLAMI F, TIŠLER Z, HUBÁČEK J, TOMAS M, BAČIAK M, VAKILI M. Production of light olefins via Fischer-Tropsch process using iron-based catalysts: a review[J]. Catalysts,2022,12(2):174. doi: 10.3390/catal12020174
    [29] LI Z, LIN T, YU F, AN Y, DAI Y, LI S, ZHONG L, WANG H, GAO P, SUN Y, HE M. Mechanism of the Mn promoter via CoMn spinel for morphology control: formation of Co2C nanoprisms for Fischer-Tropsch to olefins reaction[J]. ACS Catal,2017,7(12):8023−8032. doi: 10.1021/acscatal.7b02144
    [30] TIAN Z, WANG C, SI Z, MA L, CHEN L, LIU Q, ZHANG Q, HUANG H. Fischer-Tropsch synthesis to light olefins over iron-based catalysts supported on KMnO4 modified activated carbon by a facile method[J]. Appl Catal A-Gen,2017,541:50−59. doi: 10.1016/j.apcata.2017.05.001
    [31] 卢方旭. CO/CO2催化加氢铁基催化剂高效活性相调控[D]. 北京: 北京化工大学, 2021.

    LU Fang-xu. Efficient active phase modulation of CO/CO2 catalytic hydrogenation iron-based catalysts[D]. Beijing: Beijing University of Chemical Technology, 2021.
    [32] KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev,2007,107(5):1692−1744. doi: 10.1021/cr050972v
    [33] XIONG H, JEWELLL L L, COVILLE N J. Shaped carbons as supports for the catalytic conversion of syngas to clean fuels[J]. ACS Catal,2015,5(4):2640−2658. doi: 10.1021/acscatal.5b00090
    [34] 包信和. 催化基础理论研究发展浅析-兼述催化中的限域效应(代序)[J]. 中国科学:化学,2012,42(4):355−362.

    BAO Xin-he. Fundamental research in catalysis with emphasis on confinement effects (Substitute Preface)[J]. Sci China-Chem,2012,42(4):355−362.
    [35] ZHU Y, YE Y, ZHANG S, LEONG M E, TAO F. Synthesis and catalysis of location-specific cobalt nanoparticles supported by multiwall carbon nanotubes for Fischer-Tropsch synthesis[J]. Langmuir,2012,28(21):8275−8280. doi: 10.1021/la300607k
    [36] PAN X, BAO X. The effects of confinement inside carbon nanotubes on catalysis[J]. Acc Chem Res,2011,44(8):553−562. doi: 10.1021/ar100160t
    [37] WANG C, PAN X, BAO X. Direct production of light olefins from syngas over a carbon nanotube confined iron catalyst[J]. Sci Bull,2010,55(12):1117−1119. doi: 10.1007/s11434-010-0076-8
    [38] CHEN X, DENG D, PAN X, HU Y, BAO, X. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins[J]. ChemComm,2015,51(1):217−220.
    [39] LU J, YANG L, XU B, WU Q, ZHANG D, YUAN S, ZHAI Y, WANG X, FAN Y, HU Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catal,2014,4:613−621. doi: 10.1021/cs400931z
    [40] YAO J, KRAUSSLER M, BENEDIKT F, HOFBAUER H. Techno-economic assessment of hydrogen production based on dual fluidized bed biomass steam gasification, biogas steam reforming, and alkaline water electrolysis processes[J]. Energy Convers Manage,2017,145:278−292. doi: 10.1016/j.enconman.2017.04.084
    [41] YAO J, LIU J, HOFBAUER H, CHEN G, YAN B, SHAN R, LI W. Biomass to hydrogen-rich syngas via steam gasification of bio-oil/biochar slurry over LaCo1-xCuxO3 perovskite-type catalysts[J]. Energy Convers Manage,2016,117:343−350. doi: 10.1016/j.enconman.2016.03.043
    [42] CHEN G, YAO J, LIU J, YAN B, SHAN R. Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry[J]. Bioresour Technol,2015,198:108−114. doi: 10.1016/j.biortech.2015.09.009
    [43] ZHOU P, HOU X, CHAO Y, YANG W, ZHANG W, MU Z, LAI J, LV F, YANG K, LIU Y, LI J, MA J, LUO J, GUO S. Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation[J]. Chem Sci,2019,10(23):5898−5905. doi: 10.1039/C9SC00658C
    [44] 张甄, 秦绍东, 何若南, 李加波, 邢爱华. 合成气直接制备低碳烯烃催化剂研究进展[J]. 现代化工,2021,41(4):58−62. doi: 10.16606/j.cnki.issn0253-4320.2021.04.013

    ZHANG Zhen, QIN Shao-dong, HE Ruo-nan, LI Jia-bo, XING Ai-hua. Research progress on catalysts for direct synthesis of light olefins from syngas[J]. Modern Chemical Industry,2021,41(4):58−62. doi: 10.16606/j.cnki.issn0253-4320.2021.04.013
    [45] 陈景润. 合成气直接制取低碳烯烃催化剂研究进展[J]. 广州化工,2017,45(15):6−8. doi: 10.3969/j.issn.1001-9677.2017.15.004

    CHEN Jing-run. Research progress on catalysts for direct conversion of syngas to light olefins[J]. Guangzhou Chemical Industry,2017,45(15):6−8. doi: 10.3969/j.issn.1001-9677.2017.15.004
    [46] ZHONG L, YU F, AN Y, ZHAO Y, SUN Y, LI Z, LIN T, LIN Y, QI X, DAI Y, GU L, HU J, JIN S, SHEN Q, WANG H. Cobalt carbide nanoprisms for direct production of lower olefins from syngas[J]. Nature,2016,538(7623):84−87. doi: 10.1038/nature19786
    [47] MIYAZAWA T, HANAOKA T, SHIMURA K, HIRATA S. Mn and Zr modified Co/SiO2 catalysts development in slurry-phase Fischer-Tropsch synthesis[J]. Appl Catal A-Gen,2013,467:47−54. doi: 10.1016/j.apcata.2013.07.010
    [48] LI Z, ZHONG L, YU F, AN Y, DAI Y, YANG Y, LIN T, LI S, WANG H, GAO P, SUN Y, HE M. Effects of sodium on the catalytic performance of CoMn catalysts for Fischer-Tropsch to olefin reactions[J]. ACS Catal,2017,7(5):3622−3631. doi: 10.1021/acscatal.6b03478
    [49] XIE J, PAALANEN P P, VAN DEELEN T W, WECKHUYSEN B M, LOUWERSE M J, DE JONG K. P. Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas[J]. Nat Commun,2019,10(1):1−10. doi: 10.1038/s41467-018-07882-8
    [50] 罗甜甜, 赵燕熹. 费-托合成钴基催化剂载体的研究进展[J]. 山东化工,2021,50(16):82−83. doi: 10.3969/j.issn.1008-021X.2021.16.030

    LUO Tian-tian, ZHAO Yan-xi. Advances in the study of cobalt-based catalyst carriers for F-T synthesis[J]. Shandong Chemical Industry,2021,50(16):82−83. doi: 10.3969/j.issn.1008-021X.2021.16.030
    [51] LIN T, LIU P, GONG K, AN Y, YU F, WANG X, ZHONG L, SUN Y. Designing silica-coated CoMn-based catalyst for Fischer-Tropsch synthesis to olefins with low CO2 emission[J]. Appl Catal B,2021,299:120683. doi: 10.1016/j.apcatb.2021.120683
    [52] WANG X, CHEN W, LIN T, LI J, YU F, AN Y, SUN Y. Effect of the support on cobalt carbide catalysts for sustainable production of olefins from syngas[J]. Chinese J Catal,2018,39(12):1869−1880. doi: 10.1016/S1872-2067(18)63153-5
    [53] FISCHER N, VAN STEEN E, CLAEYS M. Preparation of supported nano-sized cobalt oxide and fcc cobalt crystallites[J]. Catal Today,2011,171(1):174−179. doi: 10.1016/j.cattod.2011.03.018
    [54] SUN Z, SUN B, QIAO M, WEI J, YUE Q, WANG C, DENG Y, KALIAGUINE S, ZHAO D. A general chelate-assisted Co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis[J]. J Am Chem Soc,2012,134:17653−17660. doi: 10.1021/ja306913x
    [55] KANG J, DENG W, ZHANG Q, WANG Y. Ru particle size effect in Ru/CNT-catalyzed Fischer-Tropsch synthesis[J]. J Energy Chem,2013,22(2):321−328. doi: 10.1016/S2095-4956(13)60039-X
    [56] SUBRAMANIAN V, CHENG K, LANCELOT C, HEYTE S, PAUL S, MOLDOVAN S, ERSEN O, MARINOVA M, ORDOMSKY V, KHODAKOV A. Nanoreactors: an efficient tool to control the chain-length distribution in Fischer-Tropsch synthesis[J]. ACS Catal,2016,6:1785−1792. doi: 10.1021/acscatal.5b01596
    [57] MA G, WANG X, XU Y, WANG Q, WANG J, LIN J, WANG H, DONG C, ZHANG C, DING, M. Enhanced conversion of syngas to gasoline-range hydrocarbons over carbon encapsulated bimetallic FeMn nanoparticles[J]. ACS Appl Energy Mater,2018,1(8):4304−4312. doi: 10.1021/acsaem.8b00932
    [58] KARANDIKAR P R, LEE Y J, KWAK G, WOO M H, PARK S J, PARK H G, HA K, JUN, K W. Co3O4@mesoporous silica for Fischer-Tropsch synthesis: core-shell catalysts with multiple core assembly and different pore diameters of shell[J]. J Phys Chem C,2014,118(38):21975−21985. doi: 10.1021/jp504936k
    [59] CHENG Q, TIAN Y, LYU S, ZHAO N, MA K, DING T, JIANG Z, WANG L, ZHANG J, ZHENG L, GAO F, DONG L, TSUBAKI N, LI X. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis[J]. Nat Commun,2018,9(1):3250. doi: 10.1038/s41467-018-05755-8
    [60] XU Y, WANG J, MA G, BAI J, DU Y, DING M. Selective conversion of syngas to olefins-rich liquid fuels over core-shell FeMn@SiO2 catalysts[J]. Fuel,2020,275:117884. doi: 10.1016/j.fuel.2020.117884
    [61] MAKERTIHATHA I G B N, FADHLI F, FATHONI Z, SUBAGGO. Production of biofuel by low temperature Fischer-Tropsch using Co-K/γ-Al2O3[J]. IOP Conference Series:Mater Sci Eng C,2020,823:12024. doi: 10.1088/1757-899X/823/1/012024
    [62] LI J, HE Y, TAN L, ZHANG P, PENG X, ORUGANTI A, YANG G, ABE H, WANG Y, TSUBAKI N. Integrated tuneable synthesis of liquid fuels via Fischer-Tropsch technology[J]. Nat Catal,2018,1(10):787−793. doi: 10.1038/s41929-018-0144-z
    [63] XIE J, PAALANEN P P, VAN DEELEN T W, WECKHUYSEN B M, LOUWERSE M J, DE JONG K P. Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas[J]. Nat Commun,2019,10(1):1−10. doi: 10.1038/s41467-018-07882-8
    [64] PENG X, CHENG K, KANG J, GU B, YU X, ZHANG Q, WANG Y. Impact of hydrogenolysis on the selectivity of the Fischer-Tropsch synthesis: diesel fuel production over mesoporous zeolite Y-supported cobalt nanoparticles[J]. Angew,2015,54(15):4553−4556. doi: 10.1002/anie.201411708
    [65] 史永永, 蒋东海, 杨春亮, 易芸, 刘飞, 林倩, 曹建新. 双功能催化剂在合成气一步法制低碳烯烃中的研究进展[J]. 应用化工,2021,50(4):1060−1063. doi: 10.3969/j.issn.1671-3206.2021.04.042

    SHI Yong-yong, JIANG Dong-hai, YANG Chun-liang, YI Yun, LIU Fei, LIN Qian, CAO Jian-xin. Research progress of bifunctional catalyst for one-step coversion from syngas to light olefins[J]. Applied Chemical Industry,2021,50(4):1060−1063. doi: 10.3969/j.issn.1671-3206.2021.04.042
    [66] CHENG K, ZHOU W, KANG J, HE S, SHI S, ZHANG Q, PAN Y, WEN W, WANG Y. Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability[J]. Chem,2017,3(2):334−347. doi: 10.1016/j.chempr.2017.05.007
    [67] KIRILIN A V, DEWILDE J F, SANTOS V, CHOJECKI A, SCIERANKA K, MALEK A. Conversion of synthesis gas to light olefins: impact of hydrogenation activity of methanol synthesis catalyst on the hybrid process selectivity over Cr-Zn and Cu-Zn with SAPO-34[J]. Ind Eng Chem Res,2017,56(45):13392−13401. doi: 10.1021/acs.iecr.7b02401
    [68] RAVEENDRA G, LI C, CHENG Y, MENG F, LI, Z. Direct transformation of syngas to lower olefins synthesis over hybrid Zn-Al2O3/SAPO-34 Catalysts[J]. New J Chem,2018,42(6):4419−4431. doi: 10.1039/C7NJ04734G
    [69] KANG J, CHENG K, ZHANG L, ZHANG Q, DING J, HUA W, LOU Y, ZHAI Q, WANG, Y. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-C11 isoparaffins[J]. Angew,2011,50:5200−5203. doi: 10.1002/anie.201101095
    [70] CHENG K, ZHANG L, KANG J, PENG X, ZHANG Q, WANG Y. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles[J]. Chem Eur J,2015,21(5):1928−1937. doi: 10.1002/chem.201405277
    [71] SHAMSI A, RAO V U S, GORMLEY R J, OBERMYER R T, SCHEHL R R, STENCEL J M. Zeolite-supported cobalt catalysts for the conversion of synthesis gas to hydrocarbon products[J]. Ind Eng Chem Res,1984,23(4):513−519. doi: 10.1021/i300016a001
    [72] PRIHOD'KO R, IHOR A, SYCHEV M, HENSEN E. Influence of preparation procedure on the surface chemistry and catalytic characteristics of Fe-ZSM-5 zeolite in selective oxidation of benzene to phenol[J]. Russ J Appl Chem,2006,79:1115−1121. doi: 10.1134/S1070427206070147
    [73] JIAO F, PAN X, GONG K, CHEN Y, LI G, BAO X. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate[J]. Angew,2018,57(17):4692−4696. doi: 10.1002/anie.201801397
    [74] JIAO F, LI J, PAN X, XIAO J, LI H, MA H, WEI M, PAN Y, ZHOU Z, LI M, MIAO S, LI J, ZHU Y, XIAO D, HE T, YANG J, QI F, FU Q, BAO X. Selective conversion of syngas to light olefins[J]. Science,2016,351(6277):1065−1068. doi: 10.1126/science.aaf1835
    [75] CHENG K, GU B, LIU X, KANG J, ZHANG Q, WANG Y. Direct and highly selective conversion of synthesis gas to lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling[J]. Angew,2016,128(15):4803−4806. doi: 10.1002/ange.201601208
    [76] LIU X, WANG M, YIN H, HU J, CHENG K, KANG J, ZHANG Q, WANG Y. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catal,2020,10(15):8303−8314. doi: 10.1021/acscatal.0c01579
    [77] ZHANG P, MENG F, LI X, YANG L, MA P, LI Z. Excellent selectivity for direct conversion of syngas to light olefins over Mn-Ga oxide and SAPO-34 bifunctional catalyst[J]. Catal Sci Technol,2019,9:5577−5581. doi: 10.1039/C9CY01348B
    [78] WANG S, WANG P, SHI D, SHIPEL H, ZHANG L, YAN W, QIN Z, LI J, DONG M, WANG J, OLSBYE U, FAN W. Direct conversion of syngas into light olefins with low CO2 emission[J]. ACS Catal,2020,10(3):2046−2059. doi: 10.1021/acscatal.9b04629
    [79] WANG C, ZHANG J, QIN G, WANG L, ZUIDEMA E, YANG Q, XIAO F S. Direct conversion of syngas to ethanol within zeolite crystals[J]. Chem,2020,6(3):646−657. doi: 10.1016/j.chempr.2019.12.007
    [80] LIU X, ZHOU W, YANG Y, CHENG K, KANG J, ZHANG L, ZHANG G, WANG Y. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefinsvia methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718. doi: 10.1039/C8SC01597J
    [81] LI N, JIAO F, PAN X, DING, Y, FENG J, BAO X. Size effects of ZnO nanoparticles in bifunctional catalysts for selective syngas conversion[J]. ACS Catal,2019,9(2):960−966. doi: 10.1021/acscatal.8b04105
    [82] LI N, JIAO F, PAN X, CHEN Y, FENG J, LI G, BAO X. High-quality gasoline directly from syngas by dual metal oxide-zeolite (OX-ZEO) catalysis[J]. Angew,2019,58(22):7400−7404. doi: 10.1002/anie.201902990
    [83] PARK G, AHN C, PARK S, LEE Y, KWAK G, KIM S K. Diffusion-dependent upgrading of hydrocarbons synthesized by Co/zeolite bifunctional Fischer-Tropsch catalysts[J]. Appl Catal A-Gen,2020,607:117840. doi: 10.1016/j.apcata.2020.117840
    [84] NI Y, LIU Y, CHEN Z, YANG M, LIU H, HE Y, FU Y, ZHU W, LIU Z. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst[J]. ACS Catal,2019,9(2):1026−1032. doi: 10.1021/acscatal.8b04794
    [85] ZHOU W, KANG J, CHENG K, HE S, SHI J, ZHOU C, ZAHNG Q, CHEN J, PENG L, CHEN M, WANG Y. Direct conversion of syngas into methyl acetate, ethanol, and ethylene by relay catalysis via the intermediate dimethyl ether[J]. Angew,2018,57(37):12012−12016. doi: 10.1002/anie.201807113
    [86] SU J, ZHOU H, LIU S, WANG C, JIAO W, WANG Y, LIU C, YE Y, ZHANG L, ZHAO Y, LIU H, WANG D, YANG W, XIE Z, HE M. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts[J]. Nat Commun,2019,10(1):1−8. doi: 10.1038/s41467-018-07882-8
    [87] ZECEVIC J, VANBUTSELE G, DE JONG K P, MARTENS J A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons[J]. Nature,2015,528:245−248. doi: 10.1038/nature16173
    [88] XU Y, WANG J, MA G, ZHANG J, DING M. Hollow zeolite nanoparticles combined with Fe3O4@MnO2 tandem catalyst for converting syngas to aromatics-rich gasoline[J]. ACS Appl. Nano Mater,2020,3(3):2857−2866. doi: 10.1021/acsanm.0c00123
    [89] DI Z, ZHAO T, FENG X, LUO M. A newly designed core-shell-like zeolite capsule catalyst for synthesis of light olefins from syngas via Fischer-Tropsch synthesis reaction[J]. Catal Lett,2019,149(2):441−448. doi: 10.1007/s10562-018-2624-9
    [90] LIU Y, SHAO W, ZHENG Y, ZHANG C, ZHOU W, ZHANG X, LIU Y. Preparation of low carbon olefins on a core-shell K-Fe5C2@ZSM-5 catalyst by Fischer-Tropsch synthesis[J]. RSC Adv,2020,10:26451−26459. doi: 10.1039/D0RA03074K
    [91] Wang H, Wang J, Yuan Y, Zhao Q, Teng X, Huang S, Ma X. Shape-selective FeMnK/Al2O3@Silicalite-2 core-shell catalyst for Fischer-Tropsch synthesis to lower olefins[J]. Catal Today,2018,314:101−106. doi: 10.1016/j.cattod.2018.01.006
    [92] CARVALHO A, MARINOVA M, BATALHA N, MARCILIO N R, KHODAKOV A Y, ORDOMSKY V V. Design of nanocomposites with cobalt encapsulated in the zeolite micropores for selective synthesis of isoparaffins in Fischer-Tropsch reaction[J]. Catal Sci Technol,2017,7(21):5019−5027. doi: 10.1039/C7CY01945A
    [93] VALERO-ROMERO M J, SARTIPI S, SUN X, RODRÍGUEZ-MIRASOL J, CORDERO T, KAPTEIJN F, GASCON J. Carbon/H-ZSM-5 composites as supports for bi-functional Fischer-Tropsch synthesis catalysts[J]. Catal Sci Technol,2016,6(8):2633−2646. doi: 10.1039/C5CY01942G
    [94] OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity[J]. Angew,2012,51(24):5810−5831. doi: 10.1002/anie.201103657
    [95] TIAN P, WEI Y, YE M, LIU Z. Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catal,2015,5(3):1922−1938. doi: 10.1021/acscatal.5b00007
    [96] XU Y, WANG J, MA G, LIN J, DING M. Designing of hollow ZSM-5 with controlled mesopore sizes to boost gasoline production from syngas[J]. ACS Sustainable Chem Eng,2019,7(21):18125−18132. doi: 10.1021/acssuschemeng.9b05217
    [97] KANG J, CHENG K, ZHANG L, ZHANG Q, DING J, HUA W, LOU Y, ZHAI Q, WANG Y. Mesoporous zeolite-supported ruthenium nanoparticles as highly selective Fischer-Tropsch catalysts for the production of C5-C11 isoparaffins[J]. Angew,2011,50:5200−5203. doi: 10.1002/anie.201101095
    [98] YANG X, SU X, LIANG B, ZHANG Y, DUAN H, MA J, HUANG Y, ZHANG T. The influence of alkali-treated zeolite on the oxide-zeolite syngas conversion process[J]. Catal Sci Technol,2018,8(17):4338−4348. doi: 10.1039/C8CY01332B
    [99] KANG J, WANG X, PENG X, YANG Y, CHENG K, ZHANG Q, WANG Y. Mesoporous zeolite Y-supported co nanoparticles as efficient Fischer-Tropsch catalysts for selective synthesis of diesel fuel[J]. Ind Eng Chem Res,2016,55(51):13008−13019. doi: 10.1021/acs.iecr.6b03810
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  1
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 录用日期:  2022-06-30
  • 修回日期:  2022-06-30
  • 网络出版日期:  2022-07-11

目录

    /

    返回文章
    返回