留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

十八烷@聚甲基丙烯酸甲酯微胶囊相变材料的制备及表征

申晋琛 林明桂 马中义 贾丽涛 李德宝

申晋琛, 林明桂, 马中义, 贾丽涛, 李德宝. 十八烷@聚甲基丙烯酸甲酯微胶囊相变材料的制备及表征[J]. 燃料化学学报(中英文), 2022, 50(11): 1511-1516. doi: 10.19906/j.cnki.JFCT.2022056
引用本文: 申晋琛, 林明桂, 马中义, 贾丽涛, 李德宝. 十八烷@聚甲基丙烯酸甲酯微胶囊相变材料的制备及表征[J]. 燃料化学学报(中英文), 2022, 50(11): 1511-1516. doi: 10.19906/j.cnki.JFCT.2022056
SHEN Jin-chen, LIN Ming-gui, MA Zhong-yi, JIA Li-tao, LI De-bao. Preparation and characterization of Oct@PMMA microcapsules phase change materials[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1511-1516. doi: 10.19906/j.cnki.JFCT.2022056
Citation: SHEN Jin-chen, LIN Ming-gui, MA Zhong-yi, JIA Li-tao, LI De-bao. Preparation and characterization of Oct@PMMA microcapsules phase change materials[J]. Journal of Fuel Chemistry and Technology, 2022, 50(11): 1511-1516. doi: 10.19906/j.cnki.JFCT.2022056

十八烷@聚甲基丙烯酸甲酯微胶囊相变材料的制备及表征

doi: 10.19906/j.cnki.JFCT.2022056
基金项目: 中央引导地方科技发展资金(YDZJSX2021C041)资助
详细信息
    通讯作者:

    Tel: 0351-4121793, E-mail:mazhgyi@sxicc.ac.cn

    dbli@sxicc.ac.cn

  • 中图分类号: O643

Preparation and characterization of Oct@PMMA microcapsules phase change materials

Funds: The project was supported by the Central Government Guides Local Science and Technology Development Funds (YDZJSX2021C041)
  • 摘要: 采用乳液聚合法合成了Oct@PMMA微胶囊相变材料,以聚乙烯吡咯烷酮作为分散剂,季戊四醇四丙烯酸酯作为交联剂改善微胶囊储热性能与热稳定性;采用FT-IR、XRD、DSC和TG等技术对微胶囊的化学和物理性质进行了表征。结果表明,聚乙烯吡咯烷酮通过提高乳液液滴的稳定性和分散程度,提升了微胶囊的热力学性能及收率,相变焓值达到105.6 J/g,收率达到98.01%,季戊四醇四丙烯酸酯改善了微胶囊的热稳定性,热降解温度达到175 ℃。
  • FIG. 1992.  FIG. 1992.

    FIG. 1992.  FIG. 1992.

    图  1  Oct@PMMA微胶囊合成机制示意图

    Figure  1  Scheme of formation mechanism for Oct@PMMA MePCMs

    图  2  SDS(a)与PVP(b)的化学结构式

    Figure  2  Chemical structure of SDS (a) and PVP (b)

    图  3  十八烷、聚甲基丙烯酸甲酯与微胶囊的FT-IR谱图

    Figure  3  FT-IR spectra of Oct, PMMA and MEPCMs

    图  4  Oct(a)与微胶囊(b−g)的XRD谱图

    Figure  4  XRD patterns of Oct (a) and MePCMs (b−g)

    图  5  微胶囊的SEM照片

    Figure  5  SEM micrographs of MePCMs

    (a): MePCMs-SDS; (b): MePCMs-1; (c): MePCMs-3; (d): MePCMs-5; (e)−(h): magnified MePCMs

    图  6  微胶囊粒径分布

    Figure  6  Particle size distribution of MePCMs

    图  7  (a):DSC熔融曲线;(b):DSC结晶曲线;(c):相变焓值、包覆率、包覆效率和热储存能力;(d):收率

    Figure  7  (a): DSC Heating curves; (b): DSC cooling curves; (c): phase change enthalpies, R, E and C; (d): Y

    图  8  Oct与微胶囊热重曲线

    Figure  8  TG curves of Oct and MePCMs

    图  9  (a):不同MMA:PETRA微胶囊热重曲线;(b):MePCM-6-2的相变循环曲线;(c):MePCM-6-2的相变焓值

    Figure  9  (a): TG curves of MePCMs at different mass ratio of MMA to PETRA; (b): Phase change cycle of MePCM-6-2; (c): Phase change enthalpy of MePCM-6-2

    表  1  微胶囊制备配方

    Table  1  Formulations for the preparation of MePCMs

    Samplem/g
    OctMMAPETRASDSPVPKPS
    MePCMs-SDS86.51.50.800.8
    MePCM-186.51.50.70.10.8
    MePCM-286.51.50.60.20.8
    MePCM-386.51.50.50.30.8
    MePCM-486.51.50.40.40.8
    MePCM-586.51.50.30.50.8
    下载: 导出CSV

    表  2  微胶囊热力学性质

    Table  2  Thermal properties of MePCMs

    SampleMelting processCrystallization process
    tm/℃ΔHm/(J·g−1tc/℃ΔHc/(J·g−1
    MePCM-SDS21.490.7218.984.09
    MePCM-121.797.9119.088.87
    MePCM-222.3105.619.2101.1
    MePCM-321.789.8519.382.42
    MePCM-421.484.7518.576.23
    MePCM-520.757.919.850.94
    Octadecane24.4223.224.1222.6
    下载: 导出CSV
  • [1] SUN W C, WANG X M, ZHANG X, KONG X F. Design and synthesis of microencapsulated phase-change materials with a poly(divinylbenzene)/dioxide titanium hybrid shell for energy storage and formaldehyde photodegradation[J]. J Phys Chem C,2020,124(38):20806−20815. doi: 10.1021/acs.jpcc.0c06656
    [2] ZHANG B L, LI S S, FEI X N, ZHAO H B, LOU X Y. Enhanced mechanical properties and thermal conductivity of paraffin microcapsules shelled by hydrophobic-silicon carbide modified melamine-formaldehyde resin[J]. Colloid Surface A,2020,603:125219. doi: 10.1016/j.colsurfa.2020.125219
    [3] ZHANG W, HAO S, ZHAO D D, BAI G Q, ZUO X, YAO J N. Preparation of PMMA/SiO2 PCM microcapsules and its thermal regulation performance on denim fabric[J]. Pigm Resin Technol,2020,49(6):491−499. doi: 10.1108/PRT-01-2020-0003
    [4] XU D, YNAG R. Efficient preparation and characterization of paraffin-based microcapsules by emulsion polymerization[J]. J Appl Polym Sci,2019,136(21):47552.
    [5] ZHOU J H, ZHAO J J, CUI Y J, CHENG W J. Synthesis of bifunctional nanoencapsulated phase change materials with nano-TiO2 modified polyacrylate shell for thermal energy storage and ultraviolet absorption[J]. Polym Int,2020,69(2):140−148. doi: 10.1002/pi.5924
    [6] ZHU Y L, QIN Y S, LIANG S E, CHEN K P, WEI C S, TIAN C R, WANG J H, LUO X, ZHANG L. Nanoencapsulated phase change material with polydopamine-SiO2 hybrid shell for tough thermo-regulating rigid polyurethane foam[J]. Thermochim Acta,2019,676:104−114. doi: 10.1016/j.tca.2019.04.005
    [7] GRAHAM M, SMITH J, BILTON M, SHCHUKINA E, NOVIKOV A A, VINOKUROV V, SHCHUKIN D G. Highly stable energy capsules with nano-SiO2 pickering shell for thermal energy storage and release[J]. ACS Nano,2020,14(7):8894−8901. doi: 10.1021/acsnano.0c03706
    [8] RAN F M, CHEN Y K, CONG R S, FANG G Y. Flow and heat transfer characteristics of microencapsulated phase change slurry in thermal energy systems: A review[J]. Renewable Sustainable Energy Rev,2020,134:110101.
    [9] XIAO L, WANG J. Research progress and application of inorganic hydrated salts phase change energy storage materials[J]. Appl Chem Ind,2021,50(6):1653−1657.
    [10] SINGH J, PARVATE S, DIXIT P, CHATOPADHYAY S. Facile synthesis of microencapsulated 1-dodecanol (PCM) for thermal energy storage and thermal buffering ability in embedded PVC film[J]. Energy Fuels,2020,34(7):8919−8930. doi: 10.1021/acs.energyfuels.0c01019
    [11] QIU X Z, TAO Y, XU X Q, HE X H, FU X Y. Synthesis and characterization of paraffin/TiO2-P(MMA-co-BA) phase change material microcapsules for thermal energy storage[J]. J Appl Polym Sci,2018,135(27):46447.
    [12] WANG H, ZHAO L, SONG G L, TANG G Y, SHI X H. Organic-inorganic hybrid shell microencapsulated phase change materials prepared from SiO2/TiC-stabilized pickering emulsion polymerization[J]. Sol Energy Mater Sol Cells,2018,175:102−110. doi: 10.1016/j.solmat.2017.09.015
    [13] ALAY S, ALKAN C, GODE F. Synthesis and characterization of poly(methyl methacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to some fabrics[J]. Thermochim Acta,2011,518(1/2):1−8. doi: 10.1016/j.tca.2011.01.014
    [14] SANCHEZ S L, RODRIGUEZ J F, SANCHEZ P. Influence of different suspension stabilizers on the preparation of Rubitherm RT31 microcapsules[J]. Colloid Surface A,2011,390(1/3):62−66. doi: 10.1016/j.colsurfa.2011.09.004
    [15] AL-SHANNAQ R, FARID M, AL-MUHTASEB S, KURDI J. Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials[J]. Sol Energy Mater Sol Cells,2015,132:311−318. doi: 10.1016/j.solmat.2014.08.036
    [16] 黄云峰, 闵洁, 叶琳, 王丽萍, 李帅涛, 宋晓秋. 聚苯乙烯包覆正十四醇微胶囊的制备及表征[J]. 高分子材料科学与工程,2017,33(11):139−144. doi: 10.16865/j.cnki.1000-7555.2017.11.023

    HUANG Yun-feng, MIN Jie, YE Lin, WANG Li-ping, LI Shuai-tao, SONG Xiao-qiu. Preparation and characterization of myristyl alcohol microcapsules coated with polystyrene[J]. Polym Mater Sci Eng,2017,33(11):139−144. doi: 10.16865/j.cnki.1000-7555.2017.11.023
    [17] 李俊, 陈颖, 莫松平, 李兴. PVP和SDS混合分散剂对水基TiO2悬浮液分散稳定性的影响[J]. 功能材料,2014,45(21):21060−21063. doi: 10.3969/j.issn.1001-9731.2014.21.013

    LI Jun, CHEN Ying, MO Song-ping, LI Xing. Effect of PVP and SDS mixed surfactants on stability of TiO2-H2O suspension[J]. J Funct Mater,2014,45(21):21060−21063. doi: 10.3969/j.issn.1001-9731.2014.21.013
    [18] 肖雯, 郑楠, 刘杰, 李宗林, 赵泽, 杨怡鑫, 周孟. 乳化剂及Pickering粒子在微胶囊技术中的研究进展[J]. 精细与专用化学品,2018,26(12):13−17. doi: 10.19482/j.cn11-3237.2018.12.04

    XIAO Wen, ZHEN Nan, LIU Jie, LI Zong-lin, ZHAO Ze, YANG Yi-xin, ZHOU Meng. Research progress on emulsifiers and Pickering particles in microencapsulation technology[J]. Fine Spec Chem,2018,26(12):13−17. doi: 10.19482/j.cn11-3237.2018.12.04
    [19] ZHANG H, WANG X, WU D. Silica encapsulation of n-octadecane via sol-gel process: A novel microencapsulated phase-change material with enhanced thermal conductivity and performance[J]. J Colloid Interf Sci,2010,343(1):246−255. doi: 10.1016/j.jcis.2009.11.036
    [20] HE F, WANG X, WU D. New approach for sol-gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor[J]. Energy,2014,67:223−233. doi: 10.1016/j.energy.2013.11.088
    [21] TUMIRAH K, HUSSEIN M Z, ZULKARNAIN Z, RAFEADAH R. Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage[J]. Energy,2014,66:881−890. doi: 10.1016/j.energy.2014.01.033
    [22] LI A, DONG C, DONG W J, ATINAFU D G, GAO H Y, CHEN X, WANG G. Hierarchical 3D reduced graphene porous-carbon-based PCMs for superior thermal energy storage performance[J]. Acs Appl Mater Inter,2018,10(38):32093−32101. doi: 10.1021/acsami.8b09541
    [23] SAMAN W, BRUNO F, HALAWA E. Thermal performance of PCM thermal storage unit for a roof integrated solar heating system[J]. Sol Energy,2005,78(2):341−349. doi: 10.1016/j.solener.2004.08.017
    [24] SHIN Y, YOO D I, SON K. Development of thermoregulating textile materials with micro encapsulated phase change materials (PCM). IV. Performance properties and hand of fabrics treated with PCM microcapsules[J]. J Appl Polym Sci,2005,97(3):910−915. doi: 10.1002/app.21846
    [25] SARIER N, ONDER E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics[J]. Thermochim Acta,2007,452(2):149−160. doi: 10.1016/j.tca.2006.08.002
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  221
  • HTML全文浏览量:  135
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 修回日期:  2022-04-01
  • 录用日期:  2022-04-02
  • 网络出版日期:  2022-07-11
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回