留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaO-Ca3Al2O6@Ni-SiO2复合催化剂制备及制氢性能

许凯 刘璐 荆洁颖 冯杰 李文英

许凯, 刘璐, 荆洁颖, 冯杰, 李文英. CaO-Ca3Al2O6@Ni-SiO2复合催化剂制备及制氢性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022057
引用本文: 许凯, 刘璐, 荆洁颖, 冯杰, 李文英. CaO-Ca3Al2O6@Ni-SiO2复合催化剂制备及制氢性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022057
Xu Kai, Liu Lu, Jing Jie-ying, Feng Jie, Li Wen-ying. Preparation and hydrogen production performance of CaO-Ca3Al2O6@Ni-SiO2 composite catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022057
Citation: Xu Kai, Liu Lu, Jing Jie-ying, Feng Jie, Li Wen-ying. Preparation and hydrogen production performance of CaO-Ca3Al2O6@Ni-SiO2 composite catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022057

CaO-Ca3Al2O6@Ni-SiO2复合催化剂制备及制氢性能

doi: 10.19906/j.cnki.JFCT.2022057
基金项目: 国家重点研发计划资助项目(2019YFC1906804-03)
详细信息
    作者简介:

    许凯(1997-),男,山西临汾人,硕士研究生,化学工程专业,主要从事能源化工领域催化剂的研制

    通讯作者:

    电话及传真:86-351-6018453. 电子邮箱:jingjieying@tyut.edu.cn (荆洁颖)

  • 中图分类号: TQ426

Preparation and hydrogen production performance of CaO-Ca3Al2O6@Ni-SiO2 composite catalyst

Funds: The project was supported by National Key Research and Development Program of China (2019YFC1906804-03)
  • 摘要: 吸附强化CH4/H2O重整制氢技术通过原位移除反应产生的CO2实现一步法制备高浓度H2,但该技术常用复合催化剂中的吸附组分CaO在吸脱附CO2时的体积变化会造成复合催化剂结构的坍塌,同时活性组分Ni也被反应生成的CaCO3包埋,造成催化和吸附性能的下降,严重影响制取H2的浓度。如何制备具有高循环稳定性的双功能复合催化剂是该技术工业化应用需攻克的关键问题之一。本文利用阳离子表面活性剂辅助刻蚀的机理采用自模板法制备了CaO-Ca3Al2O6@Ni-SiO2复合催化剂。在吸附强化CH4/H2O重整制氢实验中,该复合催化剂制氢浓度达到99.6%,且10次循环后制氢浓度为97.3%,其高活性高稳定性归因于复合催化剂中的吸附组分CaO-Ca3Al2O6在反应-再生循环过程中体积反复膨胀收缩的过程均在SiO2空腔内进行,不会造成复合催化剂结构的坍塌,同时复合催化剂制备过程中采用SiO2包覆活性组分Ni防止了其在脱碳再生过程中团聚失活,但结构表征发现复合催化剂的催化组分中仅有一部分是以Ni为核、SiO2为壳的核壳结构,还存在部分Ni直接负载在壳层SiO2上,这是导致10次循环反应中CH4转化率从99.5%降至91.8%的原因。
  • 图  1  复合催化剂CaO-Ca3Al2O6@Ni-SiO2的形成过程

    Figure  1  Formation process of composite catalyst CaO-Ca3Al2O6@Ni-SiO2

    图  2  SiO2对复合催化剂CO2吸附性能的影响

    Figure  2  Effect of SiO2 on CO2 adsorption performance of composite catalyst

    图  3  单次反应和10次反应的各产物浓度和CH4转化率(a:单次反应;b:10次反应)

    Figure  3  The concentration of each product and CH4 conversion in the first and tenth reactions (a: the first reaction; b: 10 reactions)

    图  4  Ni/ CaO-Ca3Al2O6的重整反应中各产物浓度和CH4转化率

    Figure  4  The concentration of each product and CH4 conversion in the reforming reaction of Ni/ CaO-Ca3Al2O6

    图  5  反应前后复合催化剂的XRD图谱

    Figure  5  XRD profiles of the composite catalyst before and after the reaction

    图  6  不同预处理温度下复合催化剂的H2-TPR图谱(a:300 ℃预处理下CaO-Ca3Al2O6@Ni-SiO2与CaO-Ca3Al2O6的H2-TPR图谱; b:600 ℃预处理下的CaO-Ca3Al2O6@Ni-SiO2的H2-TPR图谱)

    Figure  6  H2-TPR profile of composite catalysts at different pretreatment temperatures (a: H2-TPR profile of CaO-Ca3Al2O6@Ni-SiO2 and CaO-Ca3Al2O6 under 300 ℃ pretreatment; B: H2-TPR profile of CaO-Ca3Al2O6@Ni-SiO2 under 600 ℃ pretreatment)

    图  7  复合催化剂CaO-Ca3Al2O6@Ni-SiO2的失重情况

    Figure  7  Weight loss of composite catalyst CaO-Ca3Al2O6@Ni-SiO2

    图  8  反应前后CaO-Ca3Al2O6@Ni-SiO2的SEM图和EDS图(a、b:反应前;c、d:反应后)

    Figure  8  SEM and EDS mapping of CaO-Ca3Al2O6@Ni-SiO2(a、b:Before reaction;c、d:After reaction)

    图  9  反应前后复合催化剂的TEM图(a、b:反应前CaO-Ca3Al2O6@Ni-SiO2;c、d:反应后CaO-Ca3Al2O6@Ni-SiO2

    Figure  9  TEM images of composite catalysts (a、b: Before reaction CaO-Ca3Al2O6@SiO2;c、d: After reaction CaO-Ca3Al2O6 @Ni-SiO2)

    图  10  CaO-Ca3Al2O6@Ni-SiO2复合催化剂的结构

    Figure  10  Structure of CaO-Ca3Al2O6@Ni-SiO2 composite catalyst

    表  1  不同复合催化剂的制氢性能

    Table  1  Hydrogen production performance of different composite catalysts

    CatalysisReaction conditionRegeneration conditionCH4
    conversion/%
    H2 concentration/%The tenth cyclic reactionNumber of cycles
    Temperature /℃H2O/CH4Temperature /℃Atmosphere (mL/min)InitialStabilizationInitialStabilizationCH4/%H2/%
    CaO-Ca3Al2O6@Ni-SiO2 600 4.8 750 N2(100) 99.5 91.8 99.6 97.3 91.8 97.3 10
    Ru/Ca3Al2O6-CaO[20] 550 4 750 N2(50) 98.0 97.0 98.1 96.0 97.0 96.0 10
    Ni-CaO-Ca12Al14O33[21] 600 3 - - - - 88.0 - - - 1
    CaO-Ca12Al14O33-Ni[22] 600 3 750 N2 96.5 93.2 90.9 87.5 93.5 87.7 10
    CaO-NiO/CaZrO3[23] 650 3 800 Air 95.4 97.5 94.3 85.6 97.0 95.3 10
    Ni-CaO-Ca12Al14O33[24] 650 3 - - 96.0 - 90.0 - - - 1
    Ce-Ni10Co30/HTlc[25] 500 6 500 Excessive H2O 95.7 - 99.0 90.0 - 93.4 21
    Co3O4/SiO2/CeO2-CaO[26] 550 3 750 Ar 98.8 97.6 96.0 93.0 - - 8
    Ni/Al2O3/CaO[27] 600 3 - - 98.0 - 95.0 - - - 1
    Ni-CaO-Ca12Al14O33[28] 640 3 900 N2 89.0 82.0 90.0 85.0 - - 4
    CaO-Ca9Al6O18@Ca5Al6O14/Ni[11] 650 3 800 N2(100) 93.3 90.5 93.5 93.5 - 93.5 60
    Ni@TiO2-CaO/Al2O3[12] 650 4 800 N2 86.3 92.7 88.0 92.0 87.2 91.5 36
    下载: 导出CSV

    表  2  复合催化剂CaO-Ca3Al2O6@Ni-SiO2的组成

    Table  2  Composition of composite catalyst CaO-Ca3Al2O6@Ni-SiO2

    SubstanceNiCaOCa3Al2O6SiO2
    Content*(wt%)8.9866.8419.984.2
    *ICP-OES测试所得元素含量,通过归一化法处理得到组成含量。
    下载: 导出CSV
  • [1] HAN C, P. HARRISON D. Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen[J]. Chem Eng Sci,1994,49(24):5875−5883. doi: 10.1016/0009-2509(94)00266-5
    [2] HERCE C, CORTES C, STENDARDO S. Numerical simulation of a bubbling fluidized bed reactor for sorption-enhanced steam methane reforming under industrially relevant conditions: Effect of sorbent (dolomite and CaO-Ca12Al14O33) and operational parameters[J]. Fuel Process Technol,2019,186:137−148. doi: 10.1016/j.fuproc.2019.01.003
    [3] 厉勇, 张英, 王元华. 甲烷水蒸气重整技术研究现状及进展[J]. 炼油技术与工程,2019,49(7):1−7. doi: 10.3969/j.issn.1002-106X.2019.07.001

    LI Yong, ZHANG Ying, WANG Yuan-hua. Research status and progress of methane steam reforming technology[J]. Petrol Refin Eng,2019,49(7):1−7. doi: 10.3969/j.issn.1002-106X.2019.07.001
    [4] SOLSVIK J, SANCHEZ R A, CHAO Z X, JAKOBSEN H A. Simulations of steam methane reforming/sorption-enhanced steam methane reforming bubbling fluidized bed reactors by a dynamic one-dimensional two-fluid model: Implementation issues and model validation[J]. Ind Eng Chem,2013,52(11):4202−4220. doi: 10.1021/ie303348r
    [5] 李婷玉. 吸附强化甲烷水蒸气重整中CaO基吸附剂的改性研究[D]. 太原理工大学, 2016.

    LI Ting-yu. The modification of CaO-based Sorbents used for sorption enhanced methane steam reforming[D]. Taiyuan University of Technology, 2016.
    [6] 王云珠, 泮子恒, 赵燚, 罗永明, 高晓亚. 吸附强化蒸汽重整制氢中CO2固体吸附剂的研究进展[J]. 化工进展,2019,38(11):5103−5113.

    WANG Yun-zhu, PAN Zi-heng, ZHAO Yi, LUO Yong-ming, GAO Xiao-ya. Research progress in CO2 solid sorbents for hydrogen production by sorption-enhanced steam reforming: a review[J]. Chem Ind Eng Prog,2019,38(11):5103−5113.
    [7] FOO H C Y, TAN I S, MOHAMED A R, LEE K T. Insights and utility of cycling-induced thermal deformation of calcium-based microporous material as post-combustion CO2 sorbents[J]. Fuel,2020,260:116354. doi: 10.1016/j.fuel.2019.116354
    [8] JING J Y, WANG S D, ZHANG X W, LI Q, LI W Y. Influence of Ca/Al molar ratio on structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. J Fuel Chem Technol,2017,45(8):956−962. doi: 10.1016/S1872-5813(17)30046-4
    [9] JING J Y, ZHANG Z Y, WANG S D, LI W Y. Influence of calcination temperature on the structure and catalytic reforming performance of Ni/CaO-Al2O3 catalyst[J]. J Fuel Chem Technol,2018,46(6):673−679. doi: 10.1016/S1872-5813(18)30030-6
    [10] 蔡雨露, 田静卓, 张晓雪, 史浩锋, 赵彬然. 镍基核壳结构催化剂的制备及其在甲烷二氧化碳催化重整中的应用[J]. 天然气化工(C1化学与化工),2020,45(1):103−107.

    CAI Yu-lu, TIAN Jing-zhuo, ZHANG Xiao-xue, et, al. Preparation of nickel-based core-shell catalysts and their application in carbon dioxide reforming of methane[J]. Nat Gas Chem Ind.,2020,45(1):103−107.
    [11] CHEN X L, YANG L, ZHOU Z M, CHENG Z M. Core-shell structured CaO-Ca9Al6O18@ Ca5Al6O14/Ni bifunctional material for sorption-enhanced steam methane reforming[J]. Chem Eng Sci,2017,163:114−122. doi: 10.1016/j.ces.2017.01.036
    [12] XU J Y, WU S F. Stability of complex catalyst with NiO@TiO2 core-shell structure for hydrogen production[J]. Int J Hydrog Energy,2018,43(22):10294−10300. doi: 10.1016/j.ijhydene.2018.04.095
    [13] JING J Y, LI T Y, ZHANG X W, WANG S D, TURMEL W A, LI W Y. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism[J]. Appl Energy,2017,199:225−233. doi: 10.1016/j.apenergy.2017.03.131
    [14] PRIETO G, TÜYSÜZ H, DUYCKAERTS N, KNOSSALLA J, GUANG-HUI WANG, SCHÜTH F. Hollow Nano- and Microstructures as Catalysts[J]. Chem Rev,2016,116(22):14056−14119. doi: 10.1021/acs.chemrev.6b00374
    [15] WONG Y J, ZHU L, TEO W S, TAN Y W, YANG Y, WANG C, CHEN H. Revisiting the stober method: inhomogeneity in silica shells[J]. J Am Chem Soc,2011,133(30):11422−11425. doi: 10.1021/ja203316q
    [16] LI W, TIAN Y, ZHAO C H, ZHANG B L, ZHANG H P, ZHANG Q Y, GENG W C. Investigation of selective etching mechanism and its dependency on the particle size in preparation of hollow silica spheres[J]. J Nanopart Res,2015,17(12):1−11.
    [17] TAN L F, LIU T L, LI L L, LIU H Y, WU X L, GAO F P, HE X L, MENG X W, CHEN D, TANG F Q. Uniform double-shelled silica hollow spheres: acid/base selective-etching synthesis and their drug delivery application[J]. RSC Adv,2013,3(16):5649−5655. doi: 10.1039/c3ra40733k
    [18] FANG X L, CHEN C, LIU Z H, LIU P X, ZHENG N F. A cationic surfactant assisted selective etching strategy to hollow mesoporous silica spheres[J]. Nanoscale,2011,3(4):1632−1639. doi: 10.1039/c0nr00893a
    [19] JING J Y, ZHANG X W, LI Q, LI T Y, LI W Y. Self-activation of CaO/Ca3Al2O6 sorbents by thermally pretreated in CO2 atmosphere[J]. Appl Energy,2018,220:419−225. doi: 10.1016/j.apenergy.2018.03.069
    [20] KIM S M, ABDALA P M, HOSSEINI D, ARMUTLULU A, MARGOSSIAN T, COPéRET C, MüLLER C. Ru/Ca3Al2O6-CaO catalyst-CO2 sorbent for the production of high purity hydrogen via sorption-enhanced steam methane reforming[J]. Catal Sci Technol,2019,9(20):5745−5756. doi: 10.1039/C9CY01095E
    [21] PECHARAUMPORN P, WONGSAKULPHASATCH S, GLINRUN T, MANEEDAENG A, HASSAN Z, ASSABUMRUNGRAT S. Synthetic CaO-based sorbent for high-temperature CO2 capture in sorption-enhanced hydrogen production[J]. Int J Hydrog Energy,2019,44(37):20663−20677. doi: 10.1016/j.ijhydene.2018.06.153
    [22] VANGA G, GATTIAA D M, STENDARDO S, SCACCIAA S. Novel synthesis of combined CaO-Ca12Al14O33-Ni sorbent-catalyst material for sorption enhanced steam reforming processes[J]. Ceram Int,2019,45(6):7594−7605. doi: 10.1016/j.ceramint.2019.01.054
    [23] ANTZARAS A N, HERACLEOUS E, LEMONIDOU A A. Hybrid catalytic materials with CO2 capture and oxygen transfer functionalities for high–purity H2 production[J]. Catal Today,2021,369:2−11. doi: 10.1016/j.cattod.2020.06.018
    [24] GIULIANO A D, GALLUCCI K, FOSCOLO P U, COURSON C. Effect of Ni precursor salts on Ni-mayenite catalysts for steam methane reforming and on Ni-CaO mayenite materials for sorption enhanced steam methane reforming[J]. Int J Hydrog Energy,2019,44(13):6461−6480. doi: 10.1016/j.ijhydene.2019.01.131
    [25] GHUNGRUD S A, DEWOOLKAR K D, VAIDYA P D. Cerium-promoted bi-functional hybrid materials made of Ni, Co and hydrotalcite for sorption enhanced steam methane reforming (SESMR)[J]. Int J Hydrog Energy,2019,44(2):694−706. doi: 10.1016/j.ijhydene.2018.11.002
    [26] HAFIZI A, RAHIMPOUR M R, HERAVI M. Experimental investigation of improved calcium based CO2 sorbent and Co3O4/SiO2 oxygen carrier for clean production of hydrogen in sorption enhanced chemical looping reforming[J]. Int J Hydrog Energy,2019,44(33):17863−17877. doi: 10.1016/j.ijhydene.2019.05.030
    [27] CHEN C H, YU C T, CHEN W H, KUO H T. Effect of in-situ carbon dioxide sorption on methane reforming by nickel-calcium composite catalyst for hydrogen production[J]. Earth Env Sci,2020,463(1):012102.
    [28] MICHELI F, SCIARRA M, COURSONA C, GALLUCCI K. Catalytic steam methane reforming enhanced by CO2 capture on CaO based bi-functional compounds[J]. J Energy Chem,2017,26(5):1014−1025. doi: 10.1016/j.jechem.2017.09.001
    [29] HU J W, HONGMANOROM P, V. GALVITA V, LI Z, KAWI S. Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming[J]. Appl Catal B,2021,284:119734. doi: 10.1016/j.apcatb.2020.119734
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  2
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-02
  • 录用日期:  2022-07-04
  • 修回日期:  2022-06-27
  • 网络出版日期:  2022-07-11

目录

    /

    返回文章
    返回