留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物油及其衍生物催化重整制氢研究进展

李果 张安东 万震 李志合 王绍庆 李宁 张鹏

李果, 张安东, 万震, 李志合, 王绍庆, 李宁, 张鹏. 生物油及其衍生物催化重整制氢研究进展[J]. 燃料化学学报(中英文), 2023, 51(4): 444-457. doi: 10.19906/j.cnki.JFCT.2022061
引用本文: 李果, 张安东, 万震, 李志合, 王绍庆, 李宁, 张鹏. 生物油及其衍生物催化重整制氢研究进展[J]. 燃料化学学报(中英文), 2023, 51(4): 444-457. doi: 10.19906/j.cnki.JFCT.2022061
LI Guo, ZHANG An-dong, WAN Zhen, LI Zhi-he, WANG Shao-qing, LI Ning, ZHANG Peng. Research progress on catalytic reforming of bio-oil and its derivatives for hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 444-457. doi: 10.19906/j.cnki.JFCT.2022061
Citation: LI Guo, ZHANG An-dong, WAN Zhen, LI Zhi-he, WANG Shao-qing, LI Ning, ZHANG Peng. Research progress on catalytic reforming of bio-oil and its derivatives for hydrogen production[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 444-457. doi: 10.19906/j.cnki.JFCT.2022061

生物油及其衍生物催化重整制氢研究进展

doi: 10.19906/j.cnki.JFCT.2022061
基金项目: 国家重点研发计划(2019YFD1100602),国家自然科学基金(52176192)和山东省自然科学基金(ZR2021ME035,ZR2021QE132)资助
详细信息
    通讯作者:

    Tel:18678191880,E-mail:lizhihe@sdut.edu.cn

  • 中图分类号: TK6

Research progress on catalytic reforming of bio-oil and its derivatives for hydrogen production

Funds: The project was supported by National Key Research and Development Program (2019YFD1100602), National Natural Science Foundation of China (52176192) and Shandong Provincial Natural Science Foundation (ZR2021ME035,ZR2021QE132)
  • 摘要:

    氢气作为最理想的清洁能源之一,在石油、化工、冶金、石化、食品和化肥工业等行业中发挥着重要作用。生物油水蒸气催化重整制氢作为一种具有发展前景且经济可行的绿色制氢技术,近些年来受到了研究者的广泛关注。本工作对近年来该领域的研究进展进行综述,重点分析了生物油(生物原油、水相生物油以及重质生物油/焦油)、生物油模型化合物(羧酸类、醇类、酚类等)和其他生物油衍生物的催化重整产氢过程,包括其在重整反应机理、重整工艺以及催化剂等方面的研究进展。对多种混合模化物以及真实生物油催化重整反应机理的深入探究是目前研究的主要难点,研制节能、高效的催化重整反应器以及开发稳定、高活性的重整催化剂是目前乃至今后生物油催化重整制氢领域研究和推广的重点。

  • FIG. 2204.  FIG. 2204.

    FIG. 2204.  FIG. 2204.

    图  1  生物原油(左)、水相生物油(中)以及重质生物油(右)

    Figure  1  Biocrude oil (left), aqueous bio-oil (middle) and heavy bio-oil (right)

    图  2  水相生物油原位汽化-催化重整制氢(a)固定床/(b)流化床反应装置[22]

    Figure  2  In-situ vaporization-catalytic reforming of aqueous bio-oil for hydrogen production (a) fixed bed/ (b) fluidized bed reactor[22]

    图  3  共沉淀法制备钛改性催化剂催化乙酸反应机理[38]

    Figure  3  Mechanism of titanium-modified catalyst prepared by co-precipitation method for acetic acid reaction[38](with permission from Elsevier Publications)

    图  4  甲醇水蒸气重整的反应路径示意图[50]

    Figure  4  Reaction pathways of steam reforming of methanol[50](with permission from Elsevier Publications)

    图  5  Ni/Al2O3催化剂上乙醇水蒸气重整机理示意图[51]

    Figure  5  Schematic diagram of steam reforming mechanism of ethanol over Ni/Al2O3 catalyst[51] Note: Blue balls indicate Al2O3 support, red balls Ni particles, * indicates free radicals, solid lines indicate strong chemical bonds, dashed lines indicate the interaction between catalyst and intermediate species(with permission from Elsevier Publications)

    图  6  (a)TiO2水蒸气重整反应中苯酚的吸附模式机理;(b)Ni/TiO2水蒸气重整反应过程中苯酚的吸附模式机理[65]

    Figure  6  (a) Adsorption mode mechanism of phenol in the TiO2 steam reforming reaction; (b) adsorption mode mechanism of phenol in the Ni/TiO2 steam reforming reaction process[65](with permission from Elsevier Publications )

    图  7  水相生物油催化重整的触发机理及积炭形成路径[73]

    Figure  7  Triggering mechanism and coke formation pathway of aqueous bio-oil catalytic reforming[73]Note: White balls represent H atoms, red are O atoms, and gray balls are C atoms (with permission from Elsevier Publications )

    表  1  生物油水蒸气催化重整过程中反应方程式

    Table  1  Reaction equations during steam catalytic reforming of bio-oil

    Reaction nameReaction equation
    Steam reforming reaction${\text{C} }_{{n} }{\text{H} }_{{m} }{\text{O} }_{{k} } \text{ + } \left({n}-{k}\right){\text{H} }_{\text{2} }\text{O}\to {n}\text{CO} + \left({n + }\dfrac{{m} }{\text{2} }-{k}\right){\text{H} }_{\text{2} }$(1)
    WGS$ \text{CO}\text{}\text{ + }\text{}{\text{H}}_{\text{2}}\text{O}\text{}\text{→}\text{}\text{C}{\text{O}}_{\text{2}}\text{}\text{ + }\text{}{\text{H}}_{\text{2}} $(2)
    Overall reaction${\text{C} }_{{n} }{\text{H} }_{{m} }{\text{O} }_{{k} }\text{ + }\left({2n}-{k}\right){\text{H} }_{\text{2} }\text{O}\text{}\text{→}\text{}n\text{C}{\text{O} }_{\text{2} }\text{ + }\left({2n }\text{ + }\dfrac{{m} }{\text{2} }-{k}\right){\text{H} }_{\text{2} }$(3)
    Methane decomposition reaction$ \text{C}{\text{H}}_{\text{4}}\text{}\text{→}\text{}\text{2}{\text{H}}_{\text{2}}\text{ + }\text{C} $(4)
    Methane reforming$ \text{C}{\text{H}}_{\text{4}}\text{ + }{\text{}\text{H}}_{\text{2}}\text{O}\text{}\text{→}\text{}\text{3}{\text{H}}_{\text{2}}\text{ + }\text{CO} $(5)
    Carbon gasification reaction$ \text{C}\text{ + }{\text{H}}_{\text{2}}\text{O}\text{}\text{→}\text{}\text{CO}\text{ + }{\text{H}}_{\text{2}} $(6)
    Thermal cracking reaction${\text{C} }_{{n} }{\text{H} }_{{m} }{\text{O} }_{{k} }\to {\text{C} }_{{a} }{\text{H} }_{{b} }{\text{O} }_{{c} } +$gases ($ {\text{H}}_{\text{2}}\text{,} $ ${\text{H} }_{\text{2} }\text{O, CO, }\text{C}{\text{O} }_{\text{2} }\text{,}\cdots$) $ \text{ + } $ cokes(7)
    Boudouard reaction$ \text{2CO}\text{}\text{→}\text{}\text{C}{\text{O}}_{\text{2}}\text{ + }\text{C} $(8)
    Methanation reaction$ \text{CO}\text{ + }\text{3}{\text{H}}_{\text{2}}\text{}\text{→}\text{}\text{C}{\text{H}}_{\text{4}}\text{ + }{\text{H}}_{\text{2}}\text{O} $ $ \text{C}{\text{O}}_{\text{2}}\text{ + }\text{4}{\text{H}}_{\text{2}}\text{}\text{→}\text{}\text{C}{\text{H}}_{\text{4}}\text{ + }\text{2}{\text{H}}_{\text{2}}\text{O} $(9)
    下载: 导出CSV

    表  2  阶梯Ni表面甲酸解离基本反应[36]

    Table  2  Basic reaction of formic acid dissociation on stepped Ni surface[36](with permission from Elsevier Publications)

    StepReaction equation
    R1HCOO→HCOO + H(10)
    R2HCOOH→HCO + OH(11)
    R3HCOOH→COOH + H(12)
    R4HCOOH→HCOH + O(13)
    R5HCOO→HCO + O(14)
    R6HCOO→HCOH + O(15)
    R7HCOO→CO2 + O(16)
    R8HCO→HCO + H(17)
    R9COOH→CO + OH(18)
    R10COOH→trans-COOH(19)
    R11trans-COOH→CO2 + H(20)
    R12H + H→HCOH + O(21)
    R13HCOOH→H2(22)
    R14O + H→OH(23)
    Notes: 1. All intermediates are located on the Ni surface, 2. Except for R12 and R13, all other reactions are reversible
    下载: 导出CSV

    表  3  生物油模化物的水蒸气催化重整

    Table  3  Steam catalytic reforming of bio-oil model compound

    Bio-oil modelCatalystt/℃Space timeS/C ratiox/%YH2Ref.
    Acetic acidNi-TiS/ATP60028.6 h−1393.477.6%[38]
    Acetic acidNi/CaFe2O46003.4 h−1592.1%[44]
    MethanolCeCuZn/CNTs3007.5 h−1294.298.2%[53]
    MethanolCeO2-Cu/KIT-63002 h−19699.8%[56]
    EthanolNiMo/SBA-156001.5 mL/h29050%[58]
    EthanolCa-Ni/sepiolite70059.5 h−11.59565%[59]
    GlycerinCo-La-Ni/Al2O36002 h−1< 388.2384.3%[63]
    PhenolNi-Co/CaO-Ca12Al14O33650382.232.31 L/g[67]
    PhenolNi/ZrO26500.36 mL/min75.980.7%[72]
    TolueneNi/Perovskite-CaO6504500 h−1275%[71]
    FurfuralNi/Al2O380010 h−112.859570%[72]
    Ethyl acetateNi/Al2O380010 h−110120 mL/min[73]
    HydroxyacetoneNi/Al2O380010 h−110165 mL/min[73]
    Ethylene GlycolNi/Al2O380010 h−110240 mL/min[73]
    2-methoxyphenolNi/Al2O380010 h−157.8950 mL/min[73]
    LevoglucosanNi/Al2O380010 h−110135 mL/min[73]
    Notes: S/C ratio is steam to carbon ratio, x is the reforming conversion, YH2 is hydrogen yield
    下载: 导出CSV
  • [1] YANG Y, YAO J, WANG H, YANG F, WU Z, ZHANG Z. Study on high hydrogen yield for large-scale hydrogen fuel storage and transportation based on liquid organic hydrogen carrier reactor[J]. Fuel,2022,321:124095. doi: 10.1016/j.fuel.2022.124095
    [2] ZHONG W, WANG C, PENG S, SHU R, TIAN Z, DU Y, CHN Y. Investigation on the effect of temperature on photothermal glycerol reforming hydrogen production over Ag/TiO2 nanoflake catalyst[J]. Int J Hydrogen Energy,2022,47:16507−16517. doi: 10.1016/j.ijhydene.2022.03.122
    [3] GÜR M, CANBAZ E D. Analysis of syngas production and reaction zones in hydrogen oriented underground coal gasification[J]. Fuel,2020,269:117331. doi: 10.1016/j.fuel.2020.117331
    [4] CABELLO A, MENDIARA T, ABAD A, IZQUIERDO M, GARCÍA-LABIANO F. Production of hydrogen by chemical looping reforming of methane and biogas using a reactive and durable Cu-based oxygen carrier[J]. Fuel,2022,322:124250. doi: 10.1016/j.fuel.2022.124250
    [5] ANWAR S, KHAN F, ZHANG Y, DJIRE A. Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. Int J Hydrogen Energy,2021,46:32284−32317. doi: 10.1016/j.ijhydene.2021.06.191
    [6] 陈冠益, 李婉晴, 颜蓓蓓, 单锐, 姚金刚, 马文超. NiFe/CeO2催化剂上乙二醇水相重整制氢[J]. 天津大学学报(自然科学与工程技术版),2017,50(1):7−12.

    CHEN Guan-yi, LI Wan-qing, YAN Bei-bei, DAN Rui, YAO Jin-gang, MA Wen-chao. Hydrogen production by aqueous-phase reforming of ethylene glycol over NiFe/CeO2 catalysts[J]. J Tianjin Univ (Sci Technol),2017,50(1):7−12.
    [7] 梁昌明, 张安东, 李志合, 李玉峰, 王绍庆, 易维明. 镍基催化剂催化木醋液重整制氢实验研究[J]. 燃料化学学报,2021,49(2):168−177. doi: 10.19906/j.cnki.JFCT.2021016

    LIANG Chang-ming, ZHANG An-dong, LI Zhi-he, LI Yu-feng, WANG Shao-qing, YI Wei-ming. Hydrogen production from wood vinegar reforming over cobalt modified nickel-based catalyst[J]. J Fuel Chem Technol,2021,49(2):168−177. doi: 10.19906/j.cnki.JFCT.2021016
    [8] WANG P, XIE H, ZHANG J, JIA L, YU Z, LI R. Optimization of two bio-oil steam reforming processes for hydrogen production based on thermodynamic analysis[J]. Int J Hydrogen Energy,2022,47:9853−9863. doi: 10.1016/j.ijhydene.2022.01.055
    [9] AKUBO K, NAHIL M A, WILLIAMS P T. Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas[J]. J Energy Inst,2019,92(6):1987−1996. doi: 10.1016/j.joei.2018.10.013
    [10] GAO Z, GAO G, LI C, TIAN H, XU Q, ZHANG S, XU L, HU X. Interaction of the reaction intermediates in co-reforming of acetic acid and ethanol impacts coke properties[J]. Mol Catal,2021,504(2017):111461.
    [11] 罗泽军, 胡永华, 王雨松, 朱谢飞, 朱锡锋. 重质生物油理化性质及其热解特性研究[J]. 化工学报,2019,70(8):3196−3201.

    LUO Ze-jun, HU Yong-hua, WANG Yu-song, ZHU Xie-fei, ZHU Xi-feng. Physicochemical properties and pyrolysis characteristics of heavy bio-oil[J]. CIESC J,2019,70(8):3196−3201.
    [12] HU H S, WU Y L, YANG M D. Fractionation of bio-oil produced from hydrothermal liquefaction of microalgae by liquid-liquid extraction[J]. Biomass Bioenergy,2017,108:487−500.
    [13] BIZKARRA K, BERMUDEZ J M, ARCELUS-ARRILLAGA P, BARRIO V L, CAMBRA J F, MILLAN M. Nickel based monometallic and bimetallic catalysts for synthetic and real bio-oil steam reforming[J]. Int J Hydrogen Energy,2018,43(26):11706−11718. doi: 10.1016/j.ijhydene.2018.03.049
    [14] CHEN G, YAO J, LIU J, YAN B, SHAN R. Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil[J]. Renewable Energy,2016,91:315−322. doi: 10.1016/j.renene.2016.01.073
    [15] 李丹萍. Ni/CexZr(1−x)O2-CaO催化剂吸收增强的生物油水蒸气重整制氢的研究[D]. 西安: 陕西师范大学, 2018.

    LI Dan-ping. Study on Ni/CexZr(1−x)O2-CaO catalyst for hydrogen production with enhanced absorption by steam reforming of bio-oil[D]. Xi'an: Shaanxi Normal University, 2018.
    [16] GARCÍA-GÓMEZ N, VALECILLOS J, VALLE B, REMIRO A, BILBAO J, GAYUBO A G. G. Combined effect of bio-oil composition and temperature on the stability of Ni spinel derived catalyst for hydrogen production by steam reforming[J]. Fuel,2022,326:124966. doi: 10.1016/j.fuel.2022.124966
    [17] YAN C, CHENG F, HU R. Hydrogen production from catalytic steam reforming of bio-oil aqueous fraction over Ni/CeO2-ZrO2 catalysts[J]. Int J Hydrogen Energy,2010,35(21):11693−11399. doi: 10.1016/j.ijhydene.2010.08.083
    [18] REMON J, BROUST F, VOLLE G, GARCIA L, ARAUZOA J. Hydrogen production from pine and poplar bio-oils by catalytic steam reforming. Influence of the bio-oil composition on the process[J]. Int J Hydrogen Energy,2015,40:5593−5608. doi: 10.1016/j.ijhydene.2015.02.117
    [19] BIMBELA F, ÁBREGO J, PUERTAB R, GARCA L, ARAUZO J. Catalytic steam reforming of the aqueous fraction of bio-oil using Ni-Ce/Mg-Al catalysts[J]. Appl Catal B: Environ,2017,209:346−357. doi: 10.1016/j.apcatb.2017.03.009
    [20] YAO D D, WU C F, YANG H P, HU Q, MOHAMAD A N, CHEN H, PAUL T W. Hydrogen production from catalytic reforming of the aqueous fraction of pyrolysis bio-oil with modified Ni-Al catalysts[J]. Int J Hydrogen Energy,2014,39:14642−14652.
    [21] REMIRO A, VALLE B, AGUAYO A, BILBAO J, GAYUBO AG. Operating conditions for attenuating Ni/La2O3-αAl2O3 catalyst deactivation in the steam reforming of bio-oil aqueous fraction[J]. Fuel Process Technol,2013,115:222−232. doi: 10.1016/j.fuproc.2013.06.003
    [22] 张安东, 李志合, 王丽红, 王绍庆, 梁昌明, 万震. 水相生物油原位汽化-催化重整制氢工艺优化[J]. 化工进展,2022,41(3):1340−1348. doi: 10.16085/j.issn.1000-6613.2021-1674

    ZHANG An-dong, LI Zhi-he, WANG Li-hong, WANG Shao-qing, LIANG Chang-ming, WAN Zhen. Optimization of in-situ gasification & catalytic reforming process for hydrogen production from aqueous bio-oil[J]. Chem Ind Eng Prog,2022,41(3):1340−1348. doi: 10.16085/j.issn.1000-6613.2021-1674
    [23] GAO N, SALISU J, QUAN C, WILLIAMS P. Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review[J]. Renewable Sustainable Energy Rev,2021,145:111023. doi: 10.1016/j.rser.2021.111023
    [24] LI J, LIU Z Y, TIAN Y Y, ZHU Y A, QIN S, QIAO Y Y. Catalytic conversion of gaseous tars using land, coastal and marine biomass-derived char catalysts in a bench-scale downstream combined fixed bed system[J]. Bioresour Technol,2020,304:122735. doi: 10.1016/j.biortech.2020.122735
    [25] LIU C L, CHEN D, CAO Y A, ZHANG T X, MAO Y Y, WANG W J, WANG Z G, KAWI S. Catalytic steam reforming of in-situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas[J]. Renewable Energy,2020,161:408−418. doi: 10.1016/j.renene.2020.07.089
    [26] SOUZA IC, MANFRO RL, SOUZA MM. Hydrogen production from steam reforming of acetic acid over Pt-Ni bimetallic catalysts supported on ZrO2[J]. Biomass Bioenergy,2022,156:106317. doi: 10.1016/j.biombioe.2021.106317
    [27] CAKIRYILMAZ N, ARBAG H, OKTAR N, DOGU G, DOGU T. Catalytic performances of Ni and Cu impregnated MCM-41 and Zr-MCM-41 for hydrogen production through steam reforming of acetic acid[J]. Int J Hydrogen Energy,2019,323:191−199.
    [28] WANG S, LI X, ZHANG F, CAI Q, WANG Y, LUO Z. Bio-oil catalytic reforming without steam addition: Application to hydrogen production and studies on its mechanism[J]. Int J Hydrogen Energy,2013,38:16038−16047. doi: 10.1016/j.ijhydene.2013.10.032
    [29] WANG Y R, SUN K, ZHANG S, XU L L, HU G Z, HU X. Steam reforming of alcohols and carboxylic acids: Importance of carboxyl and alcoholic hydroxyl groups on coke properties[J]. J Energy Inst,2021,98:85−97. doi: 10.1016/j.joei.2021.06.002
    [30] CHEN W H, LU C Y, TRAN K Q, LIN Y L, NAQVI S R. A new design of catalytic tube reactor for hydrogen production from ethanol steam reforming[J]. Fuel,2020,281:118746. doi: 10.1016/j.fuel.2020.118746
    [31] SOMASREE R, MOHARMED M A, SWATI D, T. SUNDARARAJAN, RAO G. R. Thermochemical hydrogen production using Rh/CeO2/γ-Al2O3 catalyst by steam reforming of ethanol and water splitting in a packed bed reactor[J]. Int J Hydrogen Energy,2021,46:19254−19269. doi: 10.1016/j.ijhydene.2021.03.079
    [32] WANG S R, ZHANG F, CAI Q, LI X B, ZHU L J, WANG Q, LUO Z Y. Catalytic steam reforming of bio-oil model compounds for hydrogen production over coal ash supported Ni catalyst[J]. Int J Hydrogen Energy,2014,39:2018−2025. doi: 10.1016/j.ijhydene.2013.11.129
    [33] NAVARRO R M, GUIL L R, J M G C, CUBERO A, ISMAIL A A, S A A S, FIERRO J L G. Bimetallic M-Ni/Al2O3-La catalysts (M=Pt, Cu) for acetone steam reforming: Role of M on catalyst structure and activity[J]. Appl Catal A: Gen,2014,474:168−177. doi: 10.1016/j.apcata.2013.09.056
    [34] 王东旭, 肖显斌, 李文艳. 乙酸蒸汽催化重整制氢的研究进展[J]. 化工进展,2017,36(5):1658−1655. doi: 10.16085/j.issn.1000-6613.2017.05.014

    WANG Dong-xu, XIAO Xian-bin, LI Wen-yan. A review of literatures on catalytic steam reforming of acetic acid for hydrogen production[J]. Chem Ind Eng Prog,2017,36(5):1658−1655. doi: 10.16085/j.issn.1000-6613.2017.05.014
    [35] REZAEI M, CHERMAHINI A N. A DFT study on production of hydrogen from biomass-derived formic acid catalyzed by Pt-TiO2[J]. Int J Hydrogen Energy,2020,45:20993−21003. doi: 10.1016/j.ijhydene.2020.05.198
    [36] LI X, XUAN K, ZHU Y, CHEN G, YANG G. A mechanistic study on the decomposition of a model bio-oil compound for hydrogen production over a stepped Ni surface formic acid[J]. Appl Surf Sci,2018,452:87−95. doi: 10.1016/j.apsusc.2018.05.049
    [37] LI X, XUE L, ZHU Y, CHEN G, YANG G, WANG S. Mechanistic study of bio-oil catalytic steam reforming for hydrogen production: Acetic acid decomposition[J]. Int J Hydrogen Energy,2018,43:13212−13224. doi: 10.1016/j.ijhydene.2018.05.066
    [38] CHEN M, HU J, WANG Y, WANG C, TANG Z, LI C, LIANG D, CHENG W, YANG Z, ZHANG H. Hydrogen production from acetic acid steam reforming over Ti-modified Ni/Attapulgite catalysts[J]. Int J Hydrogen Energy,2021,46:3651−3668. doi: 10.1016/j.ijhydene.2020.10.196
    [39] LI X, WANG S, ZHU Y, YANG G, ZHENG P. DFT study of bio-oil decomposition mechanism on a Co stepped surface: Acetic acid as a model compound[J]. Int J Hydrogen Energy,2015,40:330−339. doi: 10.1016/j.ijhydene.2014.11.004
    [40] WANG M, ZHANG F, WANG S. Effect of La2O3 replacement on γ-Al2O3 supported nickel catalysts for acetic acid steam reforming[J]. Int J Hydrogen Energy,2017,42:20540−20548. doi: 10.1016/j.ijhydene.2017.06.147
    [41] IBRAHIM S A, EKINCI E K, KARAMAN B P, OKTAR N. Coke-resistance enhancement of mesoporous γ-Al2O3 and MgO-supported Ni-based catalysts for sustainable hydrogen generation via steam reforming of acetic acid[J]. Int J Hydrogen Energy,2021,46:38281−38298. doi: 10.1016/j.ijhydene.2021.09.084
    [42] CHOI I, HWANG K, LEE K, LEE I. Catalytic steam reforming of biomass-derived acetic acid over modified Ni/γ-Al2O3 for sustainable hydrogen production[J]. Int J Hydrogen Energy,2019,44:180−190. doi: 10.1016/j.ijhydene.2018.04.192
    [43] YU H, LIU Y, LIU J, CHEN D. High catalytic performance of an innovative Ni/magnesium slag catalyst for the syngas production and tar removal from biomass pyrolysis[J]. Fuel,2019,254:115622. doi: 10.1016/j.fuel.2019.115622
    [44] WANG Z, SUN L, CHEN L, YANG S, XIE X, GAO M, LI T, ZHAO B, SI H, HUA D. Steam reforming of acetic acid for hydrogen production over Ni/CaxFeyO catalysts[J]. Int J Hydrogen Energy,2021,46:33132−33142. doi: 10.1016/j.ijhydene.2021.07.145
    [45] PANT K K, MOHANTY P, AGARWAL S, DALAI A K. Steam reforming of acetic acid for hydrogen production over bifunctional Ni-Co catalysts[J]. Catal Today,2013,207:36−43. doi: 10.1016/j.cattod.2012.06.021
    [46] LI P, LI X, YUAN Y, WANG Y, SHEN P, ZHU X, ZHU Y. Experimental and DFT studies on catalytic reforming of acetic acid for hydrogen production over B-doped Co/Al2O3 catalysts[J]. Int J Hydrogen Energy,2022,47:7624−7637. doi: 10.1016/j.ijhydene.2021.12.129
    [47] XIE H, YU Q, ZUO Z, HAN Z, YAO X, QIN Q. Hydrogen production via sorption-enhanced catalytic steam reforming of bio-oil[J]. Int J Hydrogen Energy,2016,41(4):2345−2353. doi: 10.1016/j.ijhydene.2015.12.156
    [48] 方书起, 王毓谦, 李攀, 陈志勇, 陈玮, 白净, 常春. 生物油催化重整制氢研究进展[J]. 化工进展,2022,41(3):1330−1339. doi: 10.16085/j.issn.1000-6613.2021-1954

    FANG Shu-qi, WANG Yu-qian, LI Pan, CHEN Zhi-yong, CHEN Wei, BAI Jing, CHANG Chun. Research progress of hydrogen production by catalytic reforming of bio-oil[J]. Chem Ind Eng Prog,2022,41(3):1330−1339. doi: 10.16085/j.issn.1000-6613.2021-1954
    [49] YANG X, WANG S, HE Y. Review of catalytic reforming for hydrogen production in a membrane-assisted fluidized bed reactor[J]. Renewable Sustainable Energy Rev,2022,154:111832. doi: 10.1016/j.rser.2021.111832
    [50] HAMMOUD D, GENNEQUIN C, ABOUKAIS A, ABI AAD D E. Hammoud. steam reforming of methanol over x% Cu/Zn-Al 400 500 based catalysts for production of hydrogen: Preparation by adopting memory effect of hydrotalcite and behavior evaluation[J]. Int J Hydrogen Energy,2015,40:1283−1297. doi: 10.1016/j.ijhydene.2014.09.080
    [51] ANIL S, INDRAJA S, SINGH R, APPARI S, ROY B. A review on ethanol steam reforming for hydrogen production over Ni/Al2O3 and Ni/CeO2 based catalyst powders[J]. Int J Hydrogen Energy,2022,47:8177−8213. doi: 10.1016/j.ijhydene.2021.12.183
    [52] MAMUSI F, FARMANZADEH D. Mechanism of ethanol steam reforming on B12N12 and Al12N12 nano-cages: A theoretical study[J]. Mater Today Commun,2022,30:103014. doi: 10.1016/j.mtcomm.2021.103014
    [53] SHAHSAVAR H, TAGHIZADEH M, KIADEHI A D. Effects of catalyst preparation route and promoters (Ce and Zr) on catalytic activity of CuZn/CNTs catalysts for hydrogen production from methanol steam reforming[J]. Int J Hydrogen Energy,2021,46:8906−8921. doi: 10.1016/j.ijhydene.2021.01.010
    [54] TAO M, MENG X, LV Y, BIAN Z, XIN Z. Effect of impregnation solvent on Ni dispersion and catalytic properties of Ni/SBA-15 for CO methanation reaction[J]. Fuel,2016,165:289−297. doi: 10.1016/j.fuel.2015.10.023
    [55] THYSSEN V V, SARTORE D M, ASSAF E M. Effect of preparation method on the performance of Ni/MgO-SiO2 catalysts for glycerol steam reforming[J]. J Energy Inst,2019,92:947−958. doi: 10.1016/j.joei.2018.07.010
    [56] TAGHIZADEH M, ABBANDANAK M H. Production of hydrogen via methanol steam reforming over mesoporous CeO2-Cu/KIT-6 nanocatalyst: Effects of polar aprotic tetrahydrofuran solvent and ZrO2 promoter on catalytic performance[J]. Int J Hydrogen Energy,2022,47:16362−16374. doi: 10.1016/j.ijhydene.2022.03.141
    [57] BEPARI S, SARKAR J J, PRADHAN N C. Kinetics of ethanol steam reforming over Ni/Olivine catalyst[J]. Int J Hydrogen Energy,2022,47:30843−30860.
    [58] ELHARATI M A, LEE K, HWANG S, HUSSAIN A M, MIURA Y, DONG S, FUKUYAMA Y, DALE N, SAUNDERS S, KIM T, HA S. The effect of silica oxide support on the catalytic activity of nickel-molybdenum bimetallic catalyst toward ethanol steam reforming for hydrogen production[J]. Chem Eng J,2022,441:135916. doi: 10.1016/j.cej.2022.135916
    [59] CHEN M, LIANG D, WANG Y, WANG C, TANG Z, LI C, HU J, CHENG W, YANG Z, ZHANG H, WANG J. Hydrogen production by ethanol steam reforming over M-Ni/sepiolite (M = La, Mg or Ca) catalysts[J]. Int J Hydrogen Energy,2021,46:21796−21811. doi: 10.1016/j.ijhydene.2021.04.012
    [60] VACHARAPONG P, ARAYAWATE S, KATANYUTANON S, TOOCHINDA P, LAWTRAKUL L, CHAROJROCHKUL S. Enhancement of Ni catalyst using CeO2-Al2O3 support prepared with magnetic inducement for ESR[J]. Catalysts,2020,10:1357. doi: 10.3390/catal10111357
    [61] CHEN M, WANG C, WANG Y, TANG Z, YANG Z, ZHANG H, WANG J. Hydrogen production from ethanol steam reforming: Effect of Ce content on catalytic performance of Co/sepiolite catalyst[J]. Fuel,2019,247:344−355. doi: 10.1016/j.fuel.2019.03.059
    [62] LAY?OZKAN G, SAHBUDAKB B, OZKAN G. Effect of molar ratio of water/ethanol on hydrogen selectivity in catalytic production of hydrogen using steam reforming of ethanol[J]. Int J Hydrogen Energy,2019,44:9823−9829. doi: 10.1016/j.ijhydene.2018.11.198
    [63] XU Q, ZHANG Z, LIAO L, LAN P, WANG R, CHEN S, LI P, ZHANG C. Hydrogen production by glycerol reforming in a two-fixed-bed reactor[J]. Int J Hydrogen Energy,2022,47:16805−16814. doi: 10.1016/j.ijhydene.2022.03.105
    [64] MONDALA T, PANTA K K, DALAIB A K. Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2-ZrO2 catalyst[J]. Int J Hydrogen Energy,2015,40:2529−2544. doi: 10.1016/j.ijhydene.2014.12.070
    [65] BAAMRAN K S, TAHIR M, MOHAMED M, KHOJA A H. Effect of support size for stimulating hydrogen production in phenol steam reforming using Ni-embedded TiO2 nanocatalyst[J]. J Environ Eng,2020,8(1):103604.
    [66] GAO K, SAHRAEI O A, ILIUTA M C. Development of residue coal fly ash supported nickel catalyst for H2 production via glycerol steam reforming[J]. Appl Catal B: Environ,2021,291:119958. doi: 10.1016/j.apcatb.2021.119958
    [67] WANG X, HE Y, XU T, XIAO B, LIU S, HU Z, LI J. CO2 sorption-enhanced steam reforming of phenol using Ni–M/CaO–Ca12Al14O33(M = Cu, Co, and Ce) as catalytic sorbents[J]. Chem Eng J,2020,393:124769. doi: 10.1016/j.cej.2020.124769
    [68] NABGAN W, ABDULLAH T A T, MAT R, NABGAN B, TRIWAHYONO S, RIPIN A. Hydrogen production from catalytic steam reforming of phenol with bimetallic nickel-cobalt catalyst on various supports[J]. Appl Catal A: Gen,2016,527:161−170. doi: 10.1016/j.apcata.2016.08.033
    [69] XU Y, ZHU Y, SHEN P, CHEN G, LI X. Production of hydrogen by steam reforming of phenol over Ni/Al2O3-ash catalysts[J]. Int J Hydrogen Energy,2022,47(28):13592−13603. doi: 10.1016/j.ijhydene.2022.02.097
    [70] 刘嘉辉, 孙道安, 杜咏梅, 李春迎, 刘昭铁, 吕剑. 芳烃蒸汽催化重整制氢研究进展[J]. 化工进展,2021,40(9):4782−4790. doi: 10.16085/j.issn.1000-6613.2021-0452

    LIU Jia-hui, SUN Dao-an, DU Yong-mei, LI Chun-ying, LIU Zhao-tie, LV Jian. Progress on hydrogen production from catalytic steam reforming of aromatic hydrocarbons[J]. Chem Ind Eng Prog,2021,40(9):4782−4790. doi: 10.16085/j.issn.1000-6613.2021-0452
    [71] ZHANG Z, QIN C, OU Z, XIA H, RAN J, WU C. Experimental and thermodynamic study on sorption-enhanced steam reforming of toluene for H2 production using the mixture of Ni/ perovskite-CaO[J]. Fuel,2021,305:121447. doi: 10.1016/j.fuel.2021.121447
    [72] SAYAS S, COSTA-SERRA J F D, CHICA A. Sustainable production of hydrogen via steam reforming of furfural (SRF) with Co-catalyst supported on sepiolite[J]. Int J Hydrogen Energy,2021,46:17481−17489. doi: 10.1016/j.ijhydene.2020.04.185
    [73] ZHANG A, LI Z, YI W, WANG L, WANG S, LIANG C, WAN Z. Reaction mechanism of in-situ vaporization catalytic reforming of aqueous bio-oil for hydrogen production[J]. Int J Hydrogen Energy,2021,47:7005−7015.
    [74] MA Z, XIAO R, ZHANG H. Catalytic steam reforming of bio-oil model compounds for hydrogen-rich gas production using bio-char as catalyst[J]. Int J Hydrogen Energy,2017,42:3579−3585. doi: 10.1016/j.ijhydene.2016.11.107
    [75] MA J, JIANG B, LI L, YU K, ZHANG Q, LV Z, TANG D. A high temperature tubular reactor with hybrid concentrated solar and electric heat supply for steam methane reforming[J]. Chem Eng J,2022,428:132073. doi: 10.1016/j.cej.2021.132073
    [76] ZHAO Q, WANG Y, WANG Y, LI L, ZENG W, LI G, HU C. Steam reforming of CH4 at low temperature on Ni/ZrO2 catalyst: Effect of H2O/CH4 ratio on carbon deposition[J]. Int J Hydrogen Energy,2020,45:14281−14292. doi: 10.1016/j.ijhydene.2020.03.112
    [77] SHAHED G V, TAHERIAN Z, KHATAEE A, MESHKANI F, OROOJI Y. Samarium-impregnated nickel catalysts over SBA-15 in steam reforming of CH4 process[J]. J Ind Eng Chem,2020,86:73−80. doi: 10.1016/j.jiec.2020.02.012
    [78] DONG S C, JIYUII K, NA Y K, JI B J. Control of textural property in spherical alumina ball for enhanced catalytic activity of Ni-supported Al2O3 catalyst in steam–methane reforming[J]. J Ind Eng Chem,2022,108:400−410.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1157
  • HTML全文浏览量:  307
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-02
  • 修回日期:  2022-07-05
  • 录用日期:  2022-07-14
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回