留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炭载金属催化剂在生物质焦油重整中的研究进展

赵小燕 汤文 曹景沛 任杰

赵小燕, 汤文, 曹景沛, 任杰. 炭载金属催化剂在生物质焦油重整中的研究进展[J]. 燃料化学学报(中英文), 2022, 50(12): 1547-1563. doi: 10.19906/j.cnki.JFCT.2022062
引用本文: 赵小燕, 汤文, 曹景沛, 任杰. 炭载金属催化剂在生物质焦油重整中的研究进展[J]. 燃料化学学报(中英文), 2022, 50(12): 1547-1563. doi: 10.19906/j.cnki.JFCT.2022062
ZHAO Xiao-yan, TANG Wen, CAO Jing-pei, REN Jie. Recent progress of tar reforming over char supported metal catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1547-1563. doi: 10.19906/j.cnki.JFCT.2022062
Citation: ZHAO Xiao-yan, TANG Wen, CAO Jing-pei, REN Jie. Recent progress of tar reforming over char supported metal catalyst[J]. Journal of Fuel Chemistry and Technology, 2022, 50(12): 1547-1563. doi: 10.19906/j.cnki.JFCT.2022062

炭载金属催化剂在生物质焦油重整中的研究进展

doi: 10.19906/j.cnki.JFCT.2022062
基金项目: 国家自然科学基金(22178374,21978317)和江苏省自然科学基金杰出青年基金(BK20200028)资助
详细信息
    作者简介:

    赵小燕(1983-),女,博士,副教授,研究方向为低品质资源定向热转化。E-mail:zhaoxiaoyan@cumt.edu.cn

    通讯作者:

    E-mail: caojingpei@cumt.edu.cn

  • 中图分类号: TQ546.5

Recent progress of tar reforming over char supported metal catalyst

Funds: The project was supported by the National Science Foundation of China (22178374,21978317) and Distinguished Youth Fund of Natural Science Foundation of Jiangsu Province (BK20200028)
  • 摘要: 焦油沉积是限制该生物质热解/气化技术大规模应用的重要阻碍之一。催化焦油重整是众多焦油脱除技术中效率最高、前景最广的技术之一,而开发高活性和稳定性的催化剂是该技术发展的重要研究方向。炭载金属催化剂由于制备简单、成本低、易回收活性金属等优势受到广泛关注。本工作从催化剂的来源和制备出发,综述了其在焦油模型化合物水蒸气重整中的应用,集中分析了高分散金属在低温下焦油裂解/重整中表现出高活性和稳定性的优势;此外,还讨论了炭载金属催化剂在生物质焦油中的应用,与传统焦油重整催化剂进行对比,并总结性阐述相应的催化反应机理。综述表明,炭载体有利于活性金属的高度分散,对催化剂温和条件下高效催化焦油重整具有促进作用;对于废催化剂,可以通过燃烧法回收能量和金属氧化物,具有一定的应用优势和前景。然而,深刻揭示焦油重整机制和进一步提高该类催化剂的稳定性是未来该领域重要研究方向。
  • FIG. 2021.  FIG. 2021.

    FIG. 2021.  FIG. 2021.

    图  1  主要的炭载金属催化剂制备方法比较

    Figure  1  Comparation for main preparation method of char-supported metal catalyst

    图  2  不同制备方法对炭载金属催化剂上金属粒径分布影响

    Figure  2  Effect of different preparation methods on metal particle size distribution over char supported metal catalysts (a): Ion-exchange method; (b): two-step impregnation method; (c): one step impregnation; (d): hydrothermal synthesis method

    图  3  炭载金属催化剂应用于生物质焦油重整反应逻辑示意图

    Figure  3  Logic diagram of char supported metal catalyst applied in reforming of biomass tar

    图  4  450 ℃下Ni/C和Co/C活性和稳定性对比[23]

    Figure  4  Activity and stability comparison of Ni/C and Co/C under 450 ℃[23](with permission from Elsevier)

    图  5  不同催化剂(金属-生物炭)催化表现对比[64]

    Figure  5  Catalytic performance comparison of different catalysts (metal-biochar)[64]

    图  6  不同温度下Ni/C和高分散Co/C催化焦油重整气体产量(a)和碳平衡(b)[23]

    Figure  6  Gas yield (a) and carbon balance (b) for catalytic tar reforming over Ni/C and highly-dispersed Co/C under different temperature[23](with permission from Elsevier)

    图  7  水热合成法制备炭载金属催化剂催化污泥热解气化气体产物分布及H2产率

    Figure  7  Gas distribution and H2 yield over char-supported catalyst prepared via hydrothermal synthesis method

    图  8  焦油模型化合物裂解机理(a)和炭载金属催化剂上甲苯水蒸气催化重整机理示意图(b)

    Figure  8  Schematic diagram of (a) tar model compound cracking and (b) catalytic toluene steam reforming mechanism over char supported metal catalyst

    图  9  炭载金属催化剂上生物质焦油重整反应机理及其失活机理示意图

    Figure  9  Schematic diagram of catalytic biomass tar reaction and deactivation mechanism over char supported metal catalyst

    表  1  焦油重整催化剂分类

    Table  1  Classification of catalyst for tar reforming

    Catalyst Characteristic Reference
    Natural ore Olivine
    Clay
    Calcined ore (calcite, magnesite, dolomite)
    Fe-containing metal oxides
    1. Abundant and cheap in nature
    2. Useful for tar cracking
    3. Calcination is required before use, but the mechanical strength is greatly reduced after calcination
    4. High catalytic temperature leads to high energy consumption and cost
    [11-15]
    Synthetic Char-supported metal catalyst 1. Cheap and wide sources
    2. Char is a good catalyst support for active metal and has strong adsorption capacity for tar
    3. Efficient tar cracking capacity
    [10, 16, 17]
    Zeolite 1. High hydrothermal stability, high tar cracking efficiency and H2 selectivity
    2. Easy to be coke deposition due to the acidic characteristic, and the price is relatively high
    [9, 18, 19]
    Alkali metal catalyst 1. Helpful to CO2 adsorption in product gas, and improve the syngas quality
    2. The alkali metals can be evaporated as the reaction progresses and are difficult to recover
    [4, 10, 14, 20]
    Ni-based catalyst 1. Strong capacity for C−C and C−H bond cleavage, high tar cracking efficiency and relatively low cost
    2. The ability to reverse the ammonia reaction and can reduce NOx emissions.
    3. The active component is easy to be sintered and inactivated by carbon deposition
    [7, 20-22]
    Non Ni-based transition metal catalyst 1. Some transition metals (Co, Cu, Zn and Fe) are good promoters which can be added in Ni-based catalyst to increase ability and stability
    2. Similar ability to Ni-based catalyst (Rh、Ru、Pd、Pt、Co and Fe)
    3. Relatively high cost
    [5, 21, 23, 24]
    下载: 导出CSV

    表  2  催化焦油模型化合物水蒸气重整

    Table  2  Catalytic steam reforming of tar model compound

    Compound Catalyst Reaction condition Conversion Stability Ref.
    Toluene impregnation, Ni/AC; SBET = 965 m2/g,
    DNi =7−13 nm
    700 ℃, S/C = 2 80% [37]
    Toluene impregnation, 10%Ni/AC; SBET =1169 m2/g,
    DNi = 11 nm
    700 ℃, LHSV =0.87 h−1,
    S/C =2.0, mcat = 0.5 g
    100% [38]
    Toluene impregnation, 12%Ni/AC; DNi = 4.7 nm 700 ℃, S/C = 2 98% 12 h [39]
    Naphthalene impregnation, 7%Ni/gasification slag 850 ℃, GHSV = 24000 h−1,
    mcat = 0.5 g
    86% [53]
    Benzene impregnation, Fe-Ni/Rice husk char 800 ℃, S/C = 3.5, mcat = 0.5 g 95.2% 10 h [54]
    Phenol one-pot synthesis,Fe/hydrochar;DFe = 4 nm 600 ℃, mcat = 0.3 g 90.7% [44]
    Toluene impregnation, Fe/waste coal char;
    SBET = 147.63 m2/g
    800 ℃, S/C = 2.5, mcat = 0.5 g 91.8% [55]
    Toluene impregnation, Ca/waste coal char;
    SBET = 147 m2/g
    900 ℃, S/C = 3, mcat = 0.5 g 94.4% [56]
    Toluene impregnation, 5%Ni/biochar;
    SBET = 524.6 m2/g, DNi = 4.8 nm
    600 ℃, S/C = 3, mcat = 0.1 g 98.7% 10 h [40]
    Toluene one-step synthesis,Ni-K/biochar;
    SBET = 444.2 m2/g, DNi = 6.8 nm
    500 ℃, S/C = 3, mcat = 0.1 g 100% 10 h [41]
    Toluene ion-exchange, 10.6%Ni/lignite char 400 ℃, S/C = 15, mcat = 0.1 g 23% [57]
    Toluene ion-exchange and impregnation,
    23%Ni/lignite char;
    SBET = 222.12 m2/g,DNi = 3−5 nm
    627 ℃, SV = 1696 h−1,
    S/C =3.5, mcat = 1.0 g
    95% [58]
    Toluene ion-exchange, 17.3%Ni/lignite char;
    SBET = 291.9 m2/g, DNi = 1.8 nm
    650 ℃, S/C = 3.4, mcat = 5.0 g 82.1% 10 h [59]
    Toluene ion-exchange, 16.7%Co/lignite char;
    SBET = 313 m2/g, DCo = 5.6 nm
    450 ℃, S/C =3.4, mcat = 4.7 g 85% 30 h [23]
    Toluene ion-exchange, 9.9%Ni/coal char;
    SBET = 222 m2/g, DNi = 4.3 nm
    600 ℃, S/C = 0.5, mcat = 5.0 g 83.9% [35]
    Toluene-Phenol ion-exchange, 8.1%Ni-0.5%P/coal char;
    SBET = 248.1 m2/g, DNi = 2.8 nm
    600 ℃, S/C = 1, mcat = 5.0 g [60]
    下载: 导出CSV

    表  3  炭载金属催化剂与其他常用催化剂在生物质焦油重整中表现对比

    Table  3  Comparison of Metal-char catalysts and other common catalysts for biomass tar reforming

    Biomas Catalyst Preparation method Reaction condition H2 yield Ref.
    Cypress Ni/coal char;Ni content,14.7% ion-exchange 1 h;tp,900 ℃;tc,500 ℃;steam,
    30 kPa;SV,3600 h−1;1 g biomass
    59.7 mmol/g [33]
    Pig manure Ni/coal char;Ni content,9.2% ion-exchange 25 h;tp,612−644 ℃;tc,622−644 ℃;
    S/C = 0.64
    28 mmol/g [36]
    Corncob Ni/lignite char;Ni content,10.6% ion-exchange 1 h;tp,900 ℃;tc,650 ℃;steam,30 kPa;

    SV,3600 h−1;1 g biomass
    61.9 mmol/g [32]
    Corncob Ni/lignite char;Ni content,
    17.32%
    ion-exchange 1 h;tp,900 ℃;tc,650 ℃;steam,
    30 kPa;SV,3600 h−1;1 g biomass
    60 mmol/g [34]
    Corncob Ni-Co/lignite char;Ni content,
    11.3%;Co content,10%
    ion-exchange and impregnation 1 h;tp,900 ℃;tc,450 ℃;steam,
    30 kPa;SV,3600 h−1;1 g biomass
    36.3 mmol/g [24]
    Corncob Co/lignite char;Co content,
    16.7%
    ion-exchange 1 h;tp,900 ℃;tc,480 ℃;steam;
    30 kPa;SV,3600 h−1;1 g biomass
    42.59 mmol/g [23]
    Wheat straw Ni/biochar;Ni content,15% impregnation tp,500 ℃;tc,800 ℃;S/B,4;1 g biomass 64.02% [68]
    Rice husk activated biochar;K content,
    27.88%
    impregnation tp,600 ℃;tc,800 ℃;5 g biomass 125.4 mL/g [67]
    Rice husk Fe/biochar;Fe content,8.85% impregnation tp,600 ℃;tc,600–800 ℃;5 g biomass 98 mL/g [64]
    Sewage sludge Ni/hydrochar;Ni content,9.6% one-step hydrothermal tp,600 ℃;tc,500–900 ℃;H2O,0.05 g/min;
    GHSV,3700 h−1;1 g biomass
    109.2 g/kg [46]
    Pine sawdust calcined dolomite tp,200–500 ℃;tc,650−800 ℃;30% H2O/N2
    (42 cm3/min);0.04 g biomass
    800 cm3/g [71]
    Sawdust Ni/dolomite impregnation S/C,5.0;WHSV,1.5 h−1tc,800 ℃ 73% [72]
    Cornstalk Ni-Ce/Al2O3;Ni content,
    14.9%;Ce content, 2%
    Co-impregnation tc,900 ℃;S/C,6;WHSV,12 h−1 71% [73]
    Sawdust Ni/MgO Commercial S/C,2;tc,800 ℃;GHSV,3600 h−1
    15.0 g catalyst
    81% [74]
    Rice husk Ni/CeO2-ZrO2; Ni content, 12% Co-impregnation S/B,4.9;tc,800 ℃ 70% [75]
    Pine sawdust Ni/La2O3-α-Al2O3; Ni content, 9.92% impregnation tc,700 ℃;S/C,12 96% [76]
    Sawdust Ni/MCM-41;Ni content,40% impregnation tp,500 ℃;tc,800 ℃;H2O,5.0 mL/h;
    0.25 g catalyst;0.8 g biomass
    51% [69]
    Pine Ni-Al;Ni content,28% Co-precipitation S/C,5.58;tc,650 ℃ 77% [77]
    Sawdust NiZnAlOx Co-precipitation tp,535 ℃;tc,650℃ 48% [78]
    Sawdust Ni-Ca-Mg-Al;Ca,0.3%;Ni∶Mg∶Al,1∶1∶1 Co-precipitation tp,550 ℃;tc,800℃;H2O,4.74 g/h;0.5 g catalyst;1 g biomass 53.3% [79]
    下载: 导出CSV

    表  4  焦油重整过程中可能同时发生的反应

    Table  4  Possible reaction during tar reforming

    Reaction Equation
    Tar formation Biomss → tar + char + H2O + gas (H2, CO, CO2, CH4, etc), ∆ $H_{{298}}^{0} $ > 0
    Thermal cracking CxHyOz(tar) → mCO + nCO2 + pH2 + qCH4, ∆ $H_{{298}}^{0} $ > 0
    Steam reforming CxHyOz(tar) + xH2O →xCO + (x + y/2)H2, ∆ $H_{{298} }^{0}$ > 0
    CxHyOz(tar) + 2xH2O →xCO2 + (2x + y/2)H2, ∆ $H_{{298}}^{0} $ > 0
    Dry reforming CxHyOz(tar) + xCO2 → 2xCO + y/2H2, ∆ $H_{{298}}^{0} $ > 0
    Methane steam reforming CH4 + H2O $ \leftrightharpoons $ CO + 3H2, ∆ $H_{{298}}^{0} $ = + 205.8 kJ/mol
    Methane dry reforming CH4 + CO2 → 2CO + 2H2, ∆ $H_{{298} }^{0}$ = + 247.3 kJ/mol
    Water-gas shift reaction CO + H2O $ \leftrightharpoons $ CO2 + H2, ∆ $H_{{298}}^{0} $ = −41.2 kJ/mol
    Coke formation CxHyxC + y/2H2, ∆ $H_{{298}}^{0} $ > 0
    Coke/char gasification 2C + 2H2O → CH4 + CO2, ∆ $H_{{298}}^{0} $ = + 15.3 kJ/mol
    C + H2O $ \leftrightharpoons $ H2 + CO, ∆ $H_{{298}}^{0} $ = + 131.3 kJ/mol
    下载: 导出CSV
  • [1] GAO N B, KAMRAN K, QUAN C, WILLIAMS P T. Thermochemical conversion of sewage sludge: A critical review[J]. Prog Energ Combust,2020,79:100843. doi: 10.1016/j.pecs.2020.100843
    [2] GUO F Q, JIA X P, LIANG S, ZHOU N, CHEN P, RUAN R. Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification[J]. Bioresour Technol,2020,298:122263. doi: 10.1016/j.biortech.2019.122263
    [3] 朱锡锋, 陆强. 生物质热解原理与技术[M]. 北京: 科学出版社, 2014.

    ZHU Xi-feng, LU Qiang. Biomass Pyrolysis Principle and Technology[M]. Beijing: Science Press, 2014.
    [4] REN J, LIU Y L, ZHAO X Y, CAO J P. Biomass thermochemical conversion: A review on tar elimination from biomass catalytic gasification[J]. J Energy Inst,2020,93(3):1083−1098. doi: 10.1016/j.joei.2019.10.003
    [5] REN J, CAO J P, ZHAO X Y, YANG F L, WEI X Y. Recent advances in syngas production from biomass catalytic gasification: A critical review on reactors, catalysts, catalytic mechanisms and mathematical models[J]. Renewable Sustainable Energy Rev,2019,116:109426. doi: 10.1016/j.rser.2019.109426
    [6] REN J, CAO J P, ZHAO X Y, LIU Y L. Recent progress and perspectives of catalyst design and downstream integration in biomass tar reforming[J]. Chem Eng J,2022,429:132316. doi: 10.1016/j.cej.2021.132316
    [7] GAO N B, SALISU J, QUAN C, WILLIAMS P. Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review[J]. Renewable Sustainable Energy Rev,2021,145:111023. doi: 10.1016/j.rser.2021.111023
    [8] SHEN Y F, YOSHIKAWA K. Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review[J]. Renewable Sustainable Energy Rev,2013,21:371−392. doi: 10.1016/j.rser.2012.12.062
    [9] GUAN G Q, KAEWPANHA M, HAO X G, ABUDULA A. Catalytic steam reforming of biomass tar: Prospects and challenges[J]. Renewable Sustainable Energy Rev,2016,58:450−461. doi: 10.1016/j.rser.2015.12.316
    [10] LEE J, KIM K H, KWON E E. Biochar as a catalyst[J]. Renewable Sustainable Energy Rev,2017,77:70−79. doi: 10.1016/j.rser.2017.04.002
    [11] 王聪哲, 许桂英. 天然非均相焦油裂解催化剂研究进展[J]. 现代化工,2018,38(12):34−40. doi: 10.16606/j.cnki.issn0253-4320.2018.12.008

    WANG Cong-zhe, XU Gui-ying. Study progress in natural heterogeneous catalysts for tar cracking[J]. Mod Chem Ind,2018,38(12):34−40. doi: 10.16606/j.cnki.issn0253-4320.2018.12.008
    [12] 梁鹏, 王晓航, 张希望, 魏爱芳, 姜万敏, 张荣, 毕继诚. 含尘焦油在改性白云石催化剂上的裂解特性[J]. 燃料化学学报,2015,43(8):932−939. doi: 10.3969/j.issn.0253-2409.2015.08.005

    LIANG Peng, WANG Xiao-hang, ZHANG Xi-wang, WEI Ai-fang, JIANG Wan-min, ZHANG Rong, BI Ji-cheng. Cracking characteristics of dust-containing tar over modified dolomite catalyst[J]. J Fuel Chem Technol,2015,43(8):932−939. doi: 10.3969/j.issn.0253-2409.2015.08.005
    [13] 牛永红, 宋子曌, 李义科, 王文才, 温建军, 郑坤灿. 载镧白云石催化剂对松木催化气化性能的研究[J]. 燃料化学学报,2021,49(1):47−54. doi: 10.1016/S1872-5813(21)60005-1

    NIU Yong-hong, SONG Zi-zhao, LI Yi-ke, WANG Wen-cai, WEN Jian-jun, ZHENG Kun-can. Performance research of lanthanum-loaded dolomite catalyst for pine catalytic gasification[J]. J Fuel Chem Technol,2021,49(1):47−54. doi: 10.1016/S1872-5813(21)60005-1
    [14] 谢玉荣, 沈来宏, 肖军, 王俊, 常连成. 生物质焦油模拟物重整制取富氢气体实验研究[J]. 燃料化学学报,2011,39(11):823−830. doi: 10.3969/j.issn.0253-2409.2011.11.005

    XIE Yu-rong, SHEN Lai-hong, XIAO Jun, WANG Jun, CHANG Lian-cheng. Experimental research on model compound reforming of biomass tar to produce H2-rich gas[J]. J Fuel Chem Technol,2011,39(11):823−830. doi: 10.3969/j.issn.0253-2409.2011.11.005
    [15] ZHAO X Y, REN X Y, REN J, CAO J P, WEI F, ZHU C, FAN X, ZHAO Y P, WEI X Y. Catalytic reforming of volatiles from biomass pyrolysis for hydrogen-rich gas production over limonite ore[J]. Energy Fuels,2017,31(4):4054−4060. doi: 10.1021/acs.energyfuels.7b00005
    [16] 杜朕屹, 徐趁, 张志华. Ni/半焦催化甲苯水蒸气重整反应的稳定性研究[J]. 太原理工大学学报,2019,50(6):771−777.

    DU Zhen-yi, XU Chen, ZHANG Zhi-hua. Study on the Stability of Ni/Biochar Catalyst for Catalytic Steam Reforming of Toluene[J]. J Taiyuan Univ Technol,2019,50(6):771−777.
    [17] 刘启聪, 何立模, 邓增通, 郭俊豪, 吴鹏, 胡松, 向军, 苏胜, 许凯, 汪一. Fe/生物质焦预重整在Ni基催化重整生物油中的作用[J]. 化工进展,2018,37(11):4273−4279. doi: 10.16085/j.issn.1000-6613.2017-2685

    LIU Qi-cong, HE Li-mo, DENG Zeng-tong, GUO Jun-hao, WU Peng, HU Song, XIANG Jun, SU Sheng, XU Kai, WANG Yi. Effect of Fe/bio-char pre-reforming on Ni-based catalytic reforming of bio oil[J]. Chem Ind Eng Progress,2018,37(11):4273−4279. doi: 10.16085/j.issn.1000-6613.2017-2685
    [18] REN X Y, FENG X B, CAO J P, TANG W, WANG Z H, YANG Z, ZHAO J P, ZHANG L Y, WANG Y J, ZHAO X Y. Catalytic conversion of coal and biomass volatiles: A review[J]. Energy Fuels,2020,34(9):10307−10363. doi: 10.1021/acs.energyfuels.0c01432
    [19] TANG W, CAO J P, YANG F L, FENG X B, REN J, WANG J X, ZHAO X Y, ZHAO M, CUI X, WEI X Y. Highly active and stable HF acid modified HZSM-5 supported Ni catalysts for steam reforming of toluene and biomass pyrolysis tar[J]. Energy Convers Manage,2020,212:112799. doi: 10.1016/j.enconman.2020.112799
    [20] 杨泽, 李挺, 王美君, 常丽萍, 任秀蓉. Ni基生物质焦油重整催化剂的研究进展[J]. 化工进展,2016,35(10):3155−3163.

    YANG Ze, LI Ting, WANG Mei-jun, CHANG Li-ping, REN Xiu-rong. Research progress on Ni-based catalyst for tar reforming in biomass gasification[J]. Chem Ind Eng Progress,2016,35(10):3155−3163.
    [21] 尚双, 兰奎, 王艳, 张娟娟, 秦振华, 李建芬. 生物质焦油重整催化剂的研究进展[J]. 生物质化学工程,2020,54(6):65−73.

    SHANG Shuan, LAN Kui, WANG Yan, ZHANG Juan-juan, QIN Zhen-hua, LI Jian-fen. Research progress on catalyst for tar reforming in biomass gasification[J]. Biomass Chem Eng,2020,54(6):65−73.
    [22] ZHANG Z K, LIU L N, SHEN B X, WU C F. Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification[J]. Renewable Sustainable Energy Rev,2018,94:1086−1109. doi: 10.1016/j.rser.2018.07.010
    [23] TANG W, CAO J P, WANG Z H, HE Z M, LIU T L, WANG Z Y, YANG F L, REN J, ZHAO X Y, FENG X B, BAI H C. Comparative evaluation of tar steam reforming over graphitic carbon supported Ni and Co catalysts at low temperature[J]. Energ Convers Manage,2021,244:114454. doi: 10.1016/j.enconman.2021.114454
    [24] YANG F L, CAO J P, ZHAO X Y, REN J, TANG W, HUANG X, FENG X B, ZHAO M, CUI X, WEI X Y. Acid washed lignite char supported bimetallic Ni-Co catalyst for low temperature catalytic reforming of corncob derived volatiles[J]. Energy Convers Manage,2019,196:1257−1266. doi: 10.1016/j.enconman.2019.06.075
    [25] 孔娇, 王欢, 于彦旭, 程亚楠, 王美君, 常丽萍, 鲍卫仁. 半焦原位气化气对淖毛湖煤热解焦油产率和品质的影响[J]. 燃料化学学报,2022,50(4):1−11.

    KONG Jiao, WANG Huan, YU Yan-xu, CHEN Ya-nan, WANG Mei-jun, CHANG Li-ping, BAO Wei-ren. Effects of syngas from semi-coke in situ gasification on yield and quality of tar from pyrolysis of Naomaohu coal[J]. J Fuel Chem Technol,2022,50(4):1−11.
    [26] 韦兵, 陈倩, 王伟成, 张万祥, 陶睿旻, 窦艺帆, 王兴军. 榆林煤水蒸气气化条件下钾的迁移行为研究[J]. 燃料化学学报,2022,50(1):1−10. doi: 10.1016/S1872-5813(21)60136-6

    WEI Bing, CHEN Qian, WANG Wei-cheng, ZHANG Wan-xiang, TAO Rui-min, DOU Yi-fan, WANG Xing-jun. Study on the migration behavior of potassium under the condition of steam gasification of Yulin coal[J]. J Fuel Chem Technol,2022,50(1):1−10. doi: 10.1016/S1872-5813(21)60136-6
    [27] 何清, 程晨, 龚岩, 丁路, 于广锁. 水热炭化生物质与煤共热解和共气化特性研究[J]. 燃料化学学报,2022,50(6):1−10. doi: 10.19906/j.cnki.jfct.2022002

    HE Qing, CHEN chen, GONG Yan, DING Lu, YU Guang-suo. Study on co-pyrolysis and co-gasification of hydrothermal carbonized biomass and coal[J]. J Fuel Chem Technol,2022,50(6):1−10. doi: 10.19906/j.cnki.jfct.2022002
    [28] REN J, CAO J P, ZHAO X Y, LIU Y L. Fundamentals and applications of char in biomass tar reforming[J]. Fuel Process Technol,2021,216:106782. doi: 10.1016/j.fuproc.2021.106782
    [29] HAO Z Q, Cao J P, Wu Y, ZHAO X Y, ZHUANG Q Q, WANG X Y, WEI X Y. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor[J]. J Power Sources,2017,361:249−258. doi: 10.1016/j.jpowsour.2017.06.086
    [30] 何鑫, 王文峰, 章新喜, 杨奕涛, 孙浩. 低阶煤显微组分含氧官能团的分布特征与差异[J]. 煤炭学报,2021,46(9):2804−2812.

    HE Xin, WANG Wen-feng, ZHANG Xin-xi, YANG Yi-tao, SUN Hao. Distribution characteristics and differences of oxygen-containing functional groups in macerals of low rank coal[J]. J China Coal Soc,2021,46(9):2804−2812.
    [31] 周剑林, 王永刚, 黄鑫, 张书, 林熊超. 低阶煤中含氧官能团分布的研究[J]. 燃料化学学报,2013,41(2):134−138. doi: 10.3969/j.issn.0253-2409.2013.02.002

    ZHOU Jian-lin, WANG Yong-gang, HUANG Xin, ZHANG Shu, LIN Xiong-chao. Determination of O-containing functional groups distribution in low-rank coals by chemical titration[J]. J Fuel Chem Technol,2013,41(2):134−138. doi: 10.3969/j.issn.0253-2409.2013.02.002
    [32] WANG B S, CAO J P, ZHAO X Y, BIAN Y, SONG C, ZHAO Y P, FAN X, WEI X Y, TAKARADA T. Preparation of nickel-loaded on lignite char for catalytic gasification of biomass[J]. Fuel Process Technol,2015,136:17−24. doi: 10.1016/j.fuproc.2014.07.024
    [33] LI L Y, MORISHITA K, MOGI H, YAMASAKI K, AKARADA T. Low-temperature gasification of a woody biomass under a nickel-loaded brown coal char[J]. Fuel Process Technol,2010,91(8):889−894. doi: 10.1016/j.fuproc.2009.08.003
    [34] REN J, CAO J P, ZHAO X Y, WEI F, LIU T L, FAN X, ZHAO Y P, WEI X Y. Preparation of high-dispersion Ni/C catalyst using modified lignite as carbon precursor for catalytic reforming of biomass volatiles[J]. Fuel,2017,202:345−351. doi: 10.1016/j.fuel.2017.04.060
    [35] REN L, YANG L J, BAI Y H, LIU Y, LV P, WANG Y X, LI F. Effects of loading methods and oxidation degree of support on the tar reforming activity of char-supported Ni catalyst using toluene as a model compound[J]. Fuel Process Technol,2020,201:106347. doi: 10.1016/j.fuproc.2020.106347
    [36] XIAO X B, CAO J P, MENG X L, LE D D, TAKARADA T. Synthesis gas production from catalytic gasification of waste biomass using nickel-loaded brown coal char[J]. Fuel,2013,103:135−140. doi: 10.1016/j.fuel.2011.06.077
    [37] QIAN K Z, KUMAR A. Catalytic reforming of toluene and naphthalene (model tar) by char supported nickel catalyst[J]. Fuel,2017,187:128−136. doi: 10.1016/j.fuel.2016.09.043
    [38] LIU X J, YANG X Q, LIU C. Low-temperature catalytic steam reforming of toluene over activated carbon supported nickel catalysts[J]. J Taiwan Inst Chem E,2016,65:233−241.
    [39] SHEN C, ZHOU W Q YU H, DU L. Ni nanoparticles supported on carbon as efficient catalysts for steam reforming of toluene (model tar)[J]. Chin J Chem Eng,2018,26(2):322−329. doi: 10.1016/j.cjche.2017.03.028
    [40] DU Z Y, ZHANG Z H, XU C, WANG X B, LI W Y. Low-temperature steam reforming of toluene and biomass tar over biochar-supported Ni nanoparticles[J]. ACS Sustainable Chem Energy,2018,7(3):3111−3119.
    [41] XU C, DU Z Y, YANG S Q, MA H D, FENG J. Effects of inherent potassium on the catalytic performance of Ni/biochar for steam reforming of toluene as a tar model compound[J]. Chin J Chem Eng,2021,35:189−195. doi: 10.1016/j.cjche.2020.06.010
    [42] GAI C, ZHANG F, GUO Y C, PENG N N, LIU T T, LANG Q Q, XIA Y, LIU Z G. Hydrochar-supported, in situ-generated nickel nanoparticles for sorption-enhanced catalytic gasification of sewage sludge[J]. ACS Sustainable Chem Eng,2017,5(9):7613−7622. doi: 10.1021/acssuschemeng.7b00924
    [43] GAI C, DONG Y P, FAN P F, ZHANG Z L, LIANG J C, XU P J. Kinetic study on thermal decomposition of toluene in a micro fluidized bed reactor[J]. Energy Convers Manage,2015,106:721−727. doi: 10.1016/j.enconman.2015.09.038
    [44] GAI C, ZHANG F, LANG Q Q, LIU T T, PENG N N. Facile one-pot synthesis of iron nanoparticles immobilized into the porous hydrochar for catalytic decomposition of phenol[J]. Appl Catal B: Environ,2017,204:566−576. doi: 10.1016/j.apcatb.2016.12.005
    [45] GAI C, ZHANG F, YANG T X, LIU Z G, JIAO W T, PENG N N, LIU T T, LANG Q Q, XIA Y. Hydrochar supported bimetallic Ni-Fe nanocatalysts with tailored composition, size and shape for improved biomass steam reforming performance[J]. Green Chem,2018,20:2788−2800. doi: 10.1039/C8GC00433A
    [46] GAI C, ZHU N M, HOEKMAN S K, LIU Z G, JIAO W T, PENG N N. Highly dispersed nickel nanoparticles supported on hydrochar for hydrogen-rich syngas production from catalytic reforming of biomass[J]. Energy Convers Manage,2019,183:474−484. doi: 10.1016/j.enconman.2018.12.121
    [47] KANG S F, HE M F, YIN C C, XU H Y, CAI Q, WANG Y G, CUI L F. Graphitic carbon embedded with Fe/Ni nano-catalysts derived from bacterial precursor for efficient toluene cracking[J]. Green Chem,2020,22(6):1934−1943. doi: 10.1039/C9GC03357B
    [48] QIU P H, DU C S, LIU L, CHEN L. Hydrogen and syngas production from catalytic steam gasification of char derived from ion-exchangeable Na- and Ca-loaded coal[J]. Int J Hydrogen Energy,2018,43:12034−12048. doi: 10.1016/j.ijhydene.2018.04.055
    [49] ZHANG J, TANG J, LIU L J, WANG J. The evolution of catalytically active calcium catalyst during steam gasification of lignite char[J]. Carbon,2021,172:162−173. doi: 10.1016/j.carbon.2020.09.089
    [50] ZOU X H, MA Z Y, LIU H B, CHEN D, WANG C, ZHANG P, CHEN T H. Green synthesis of Ni supported hematite catalysts for syngas production from catalytic cracking of toluene as a model compound of biomass tar[J]. Fuel,2018,217:343−351.
    [51] BAIDYA T, CATTOLICA R J, SEISER R. High performance Ni-Fe-Mg catalyst for tar removal in producer gas[J]. Appl Catal A: Gen,2018,558:131−139. doi: 10.1016/j.apcata.2018.03.026
    [52] WU G W, ZHANG C X, LI S R, HAN Z P, WANG T, MA X B, GONG J L. Hydrogen production via glycerol steam reforming over Ni/Al2O3: Influence of nickel precursors[J]. ACS Sustainable Chem Energy,2013,1(8):1052−1062. doi: 10.1021/sc400123f
    [53] TEOH F, VEKSHA A, CHIA V W K, UDAYANGA W D C, MOHAMED D K B, GIANNIS A, LIM T T, LISAK G. Nickel-based catalysts for steam reforming of naphthalene utilizing gasification slag from municipal solid waste as a support[J]. Fuel,2019,254:115561. doi: 10.1016/j.fuel.2019.05.144
    [54] WANG S X, SHAN R, GU J, ZHANG J, YUAN H R, CHEN Y. Pyrolysis waste char supported metallic catalyst for syngas production during catalytic reforming of benzene[J]. Int J Hydrogen Energy,2021,46(38):19835−19845. doi: 10.1016/j.ijhydene.2021.03.115
    [55] WANG S X, SHAN R, LU T, ZHANG Y Y, YUAN H R. Pyrolysis char derived from waste peat for catalytic reforming of tar model compound[J]. Appl Energy,2020,263:114565.
    [56] GU J, WANG S X, LU T, WU Y F, YUAN H R, CHEN Y. Synthesis and evaluation of pyrolysis waste peat char supported catalyst for steam reforming of toluene[J]. Renewable Energy,2020,160:964−973. doi: 10.1016/j.renene.2020.06.109
    [57] KIM S, CHUN D, RHIM Y, LIM J, KIM S, CHOI H, LEE S, YOO J. Catalytic reforming of toluene using a nickel ion-exchanged coal catalyst[J]. Int J Hydrogen Energy,2015,40(35):11855−11862. doi: 10.1016/j.ijhydene.2015.06.103
    [58] XIAO X B, LIU J, GAO A N, ZHOU-YU M Q, LIU B H, GAO M D, ZHANG X L, LU Q, DONG C Q. The performance of nickel-loaded lignite residue for steam reforming of toluene as the model compound of biomass gasification tar[J]. J Energy Inst,2018,91(6):867−876. doi: 10.1016/j.joei.2017.10.002
    [59] REN J, CAO J P, YANG F L, ZHAO X Y, TANG W, CUI X, CHEN Q, WEI X Y. Layered uniformly delocalized electronic structure of carbon supported Ni catalyst for catalytic reforming of toluene and biomass tar[J]. Energy Convers Manage,2019,183:182−192. doi: 10.1016/j.enconman.2018.12.093
    [60] LU G H, BAI Y H, REN L, WANG J F, SONG X D, YU G S. Role of phosphorus (P) additive in the performance of char-supported nickel (Ni) catalyst on tar reforming[J]. Energy Convers Manage,2020,225:113471. doi: 10.1016/j.enconman.2020.113471
    [61] FURUSAWA T, TSUTSUMI A. Comparison of Co/MgO and Ni/MgO catalysts for the steam reforming of naphthalene as a model compound of tar derived from biomass gasification[J]. Appl Catal A: Gen,2005,278(2):207−212. doi: 10.1016/j.apcata.2004.09.035
    [62] GRELUK M, ROTKO M, TURCZYNIAK SURDACKA S. Comparison of catalytic performance and coking resistant behaviors of cobalt- and nickel based catalyst with different Co/Ce and Ni/Ce molar ratio under SRE conditions[J]. Appl Catal A: Gen,2020,590:117334. doi: 10.1016/j.apcata.2019.117334
    [63] AY H, ÜNER D. Dry reforming of methane over CeO2 supported Ni, Co and Ni–Co catalysts[J]. Appl Catal B: Environ,2015,179:128−138. doi: 10.1016/j.apcatb.2015.05.013
    [64] GUO F Q, Li X L, LIU Y, PENG K Y, GUO C L, RAO Z H. Catalytic cracking of biomass pyrolysis tar over char-supported catalysts[J]. Energy Convers Manage,2018,167:81−90. doi: 10.1016/j.enconman.2018.04.094
    [65] XIAO X B, MENG X L, LE D D, TAKARADA T. Two-stage steam gasification of waste biomass in fluidized bed at low temperature: parametric investigations and performance optimization[J]. Bioresour Technol,2011,102(2):1975−1981. doi: 10.1016/j.biortech.2010.09.016
    [66] CAO J P, HUANG X, ZHAO X Y, WANG B S, MEESUK S, SATO K, WEI X Y, TAKARADA T. Low-temperature catalytic gasification of sewage sludge-derived volatiles to produce clean H2-rich syngas over a nickel loaded on lignite char[J]. Int J Hydrogen Energy,2014,39(17):9193−9199. doi: 10.1016/j.ijhydene.2014.03.222
    [67] GUO F Q, PENG K Y, LIANG S, JIA X P, JIANG X C, QIAN L. Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis[J]. Fuel,2019,258:116204. doi: 10.1016/j.fuel.2019.116204
    [68] YAO D D, HU Q, WANG D Q, YANG H P, WU C F, WANG X H, CHEN H P. Hydrogen production from biomass gasification using biochar as a catalyst/support[J]. Bioresour Technol,2016,216:159−164. doi: 10.1016/j.biortech.2016.05.011
    [69] WU C F. WANG L Z, WILLIAMS P T, SHI J, HUANG J. Hydrogen production from biomass gasification with Ni/MCM-41 catalysts: Influence of Ni content[J]. Appl Catal B: Environ,2011,108−109:6−13.
    [70] AZNAR M P, CORELLA J, DELGADO J, LAHOZ J. Improved steam gasification of lignocellulosic residues in a fluidized[J]. Ing Eng Chem Res,1993,32(1):1−10. doi: 10.1021/ie00013a001
    [71] GUSTA E, DALAI A K, UDDIN M A, SASAOKA E. Catalytic decomposition of biomass tars with dolomites[J]. Energy Fuels,2009,23:4, 2264−2272.
    [72] LI H Y, XU Q L, XUE H S, YANG Y J. Catalytic reforming of the aqueous phase derived from fast-pyrolysis of biomass[J]. Renewable Energy,2009,34(12):2872−2877. doi: 10.1016/j.renene.2009.04.007
    [73] FU P, YI W M, LI Z H, BAI X Y, ZHANG A D, LI Y M, LI Z. Investigation on hydrogen production by catalytic steam reforming of maize stalk fast pyrolysis bio-oil[J]. Int J Hydrogen Energy,2014,39(26):13962−13971. doi: 10.1016/j.ijhydene.2014.06.165
    [74] MA Z, ZHANG S P, XIE D Y, YANG Y J. A novel integrated process for hydrogen production from biomass[J]. Int J Hydrogen Energy,2014,39(3):1274−1279. doi: 10.1016/j.ijhydene.2013.10.146
    [75] YANG C F, CHEN F F, HU R R. Hydrogen production from catalytic steam reforming of bio-oil aqueous fraction over Ni/CeO2-ZrO2 catalysts[J]. Int J Hydrogen Energy,2010,35(21):11693−11699. doi: 10.1016/j.ijhydene.2010.08.083
    [76] REMIRO A, VALLE B, AGUAYA A T, BILBAO J, GAYUBO A G. Operating conditions for attenuating Ni/La2O3-αAl2O3 catalyst deactivation in the steam reforming of bio-oil aqueous fraction[J]. Fuel Process Technol,2013,115:222−232. doi: 10.1016/j.fuproc.2013.06.003
    [77] BIMBELA F, OLIVA M, RUIZ J, GARCI´A, ARAUZO J. Hydrogen production via catalytic steam reforming of the aqueous fraction of bio-oil using nickel-based coprecipitated catalysts[J]. Int J Hydrogen Energy,2013,38(34):14476−14487. doi: 10.1016/j.ijhydene.2013.09.038
    [78] DONG L S, WU C F, LIN H J, SHI J, WILLIAMS P T, HUANG J. Promoting hydrogen production and minimizing catalyst deactivation from the pyrolysis-catalytic steam reforming of biomass on nanosized NiZnAlOx catalysts[J]. Fuel,2017,188:610−620. doi: 10.1016/j.fuel.2016.10.072
    [79] JIN F Z, SUN H M, WU C F, LING H J, JIANG Y J, WILLIAMS P T, HUANG J. Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass[J]. Catal Today,2018,309:2−10. doi: 10.1016/j.cattod.2018.01.004
    [80] OEMAR U, LI AM, HIDAJAT K, KWAI S. Mechanism and kinetic modeling for steam reforming of toluene on La0.8Sr0.2Ni0.8Fe0.2O3catalyst[J]. AIChE J,2014,60(12):4190−4198. doi: 10.1002/aic.14573
    [81] 汤文. 高分散Co/C低温催化玉米芯焦油水蒸气重整[D]. 徐州: 中国矿业大学, 2021.

    TANG Wen. Highly dispersed Co/C for catalytic steam reforming of corncob tar at low temperature[D]. Xuzhou: China University of Mining and Technology, 2021.
    [82] 彭旷野. 稻壳催化热解及其半焦产物催化裂解焦油特性研究[D]. 徐州: 中国矿业大学, 2020.

    PENG Kuan-ye. Study on rice husk catalytic pyrolysis and catalytic cracking of tar over the as-produced char product[D]. Xuzhou: China University of Mining and Technology, 2020.
    [83] HUBER G W, SHABAKER J W, DUMESIC J A. Raney Ni-Sn catalyst for H2 production from biomass-derived hydrocarbons[J]. Science,2003,300(5628):2075−2077. doi: 10.1126/science.1085597
    [84] SHEN D K, GU S, LUO K H, WANG S R, FANG M X. The pyrolytic degradation of wood-derived lignin from pulping process[J]. Bioresour Technol,2010,101:6136−6146. doi: 10.1016/j.biortech.2010.02.078
    [85] GILLRT S, AGUEDO M, PETITJEAN L, MORAIS A R C, LOPES A M D C, ŁUKASIK R M, ANASTAS P T. Lignin transformations for high value applications: towards targeted modifications using green chemistry[J]. Green Chem,2017,19(18):4200−4233. doi: 10.1039/C7GC01479A
    [86] HUANG Y Q, WEI Z G, QIN Z J, YIN X L, WU C Z. Study on structure and pyrolysis behavior of lignin derived from corncob acid hydrolysis residue[J]. J Anal Appl Pyrolysis,2012,93:153−159. doi: 10.1016/j.jaap.2011.10.011
    [87] CAO J, XIAO G, XU X, SHEN D K, JIN B S. Study on carbonization of lignin by TG-FTIR and high-temperature carbonization reactor[J]. Fuel Process Technol,2013,16:41−47.
    [88] 林俊明, 岑洁, 李正甲, 杨林颜, 姚楠. Ni基重整催化剂失活机理研究进展[J]. 化工进展,2022,41(1):201−209. doi: 10.16085/j.issn.1000-6613.2021-0310

    LIN Jun-ming, CEN Jie, LI Zheng-jia, YANG Lin-yan, YAO Nan. Development on deactivation mechanism of Ni-based reforming catalysts[J]. Chem Ind Eng Progress,2022,41(1):201−209. doi: 10.16085/j.issn.1000-6613.2021-0310
    [89] ASHOK J, DEWANGAN N, DAS S, HONGMANOROM P, WAI M H, TOMISHIGE K, KAWI S. Recent progress in the development of catalysts for steam reforming of biomass tar model reaction[J]. Fuel Process Technol,2020,199:106252. doi: 10.1016/j.fuproc.2019.106252
    [90] REN J, LIU Y L. Promoting syngas production from steam reforming of toluene using a highly stable Ni/(Mg, Al)Ox catalyst[J]. Appl Catal B: Environ,2022,300:120743. doi: 10.1016/j.apcatb.2021.120743
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  1749
  • HTML全文浏览量:  145
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-28
  • 修回日期:  2022-07-16
  • 录用日期:  2022-07-19
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2022-12-28

目录

    /

    返回文章
    返回