留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有序介孔HZSM-5分子筛的合成及其在甲醇制芳烃中的催化性能

杨星 慕红梅 高鹏 王思远 田海锋 查飞

杨星, 慕红梅, 高鹏, 王思远, 田海锋, 查飞. 有序介孔HZSM-5分子筛的合成及其在甲醇制芳烃中的催化性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022064
引用本文: 杨星, 慕红梅, 高鹏, 王思远, 田海锋, 查飞. 有序介孔HZSM-5分子筛的合成及其在甲醇制芳烃中的催化性能[J]. 燃料化学学报. doi: 10.19906/j.cnki.JFCT.2022064
YANG Xing, MU Hong-mei, GAO Peng, WANG Si-yuan, TIAN Hai-feng, ZHA Fei. Synthesis of sequential mesoporous HZSM-5 molecular sieve and its catalytic performance in methanol to aromatics[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022064
Citation: YANG Xing, MU Hong-mei, GAO Peng, WANG Si-yuan, TIAN Hai-feng, ZHA Fei. Synthesis of sequential mesoporous HZSM-5 molecular sieve and its catalytic performance in methanol to aromatics[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2022064

有序介孔HZSM-5分子筛的合成及其在甲醇制芳烃中的催化性能

doi: 10.19906/j.cnki.JFCT.2022064
基金项目: 甘肃省青年科技基金计划项目(20JR10RA107);甘肃省高等学校创新基金项目(2021A-254)
详细信息
    通讯作者:

    E-mail: thfnwnu@163.com

    zhafei@nwnu.edu.cn

  • 中图分类号: TQ426.6

Synthesis of sequential mesoporous HZSM-5 molecular sieve and its catalytic performance in methanol to aromatics

Funds: Gansu Provincial Youth Science and Technology Fund Program(20JR10RA107); Gansu Province Higher Education Innovation Fund Project(2021A–254).
  • 摘要: 本文采用模板法以及水热法,成功制备了不同粒径(20、30和40 nm)、硅铝比约为50的有序介孔HZSM-5分子筛。采用XRD、SEM、TEM、N2等温吸附/脱附和Py-IR等手段对合成样品的结构、形貌和表面酸性等性质进行了表征,并在固定床反应器上测试了其在甲醇制芳烃过程中的催化活性。实验结果表明,不同粒径的有序介孔HZSM-5分子筛对甲醇制芳烃反应的催化性能不同,其中20 nm的有序介孔HZSM-5分子筛展示了优异的催化性能,轻质芳烃的选择性高达60%,催化剂在连续运行51 h之后没有明显的失活现象。
  • 图  1  样品的XRD谱图

    Figure  1  XRD spectrum of the sample

    图  2  (a) 20 nm,(b) 30 nm,(c) 40 nm SiO2微球;(d) 20 nm,(e) 30 nm,(f) 40 nm有序介孔碳;(h) 20 nm,(i) 30 nm,(g) 40 nm有序介孔HZSM-5分子筛的SEM图和(k) 20 nm SiO2微球;(l) 20 nm有序介孔碳;(m) 20 nm有序介孔HZSM-5分子筛的TEM图

    Figure  2  SEM images of (a) 20 nm, (b) 30 nm, (c) 40 nm SiO2 microspheres; (d) 20 nm, (e) 30 nm, (f) 40 nm ordered mesoporous carbon; (h) 20 nm, (i) 30 nm, (g) 40 nm ordered mesoporous HZSM-5 zeolite; TEM images of (k) 20 nm SiO2 microspheres; (l) 20 nm ordered mesoporous carbon; (m) 20 nm ordered mesoporous HZSM-5 zeolite

    图  3  不同样品的(a) N2吸附-脱附等温线图和(b)、(c)孔径分布图

    Figure  3  (a) N2 adsorption/desorption isotherms and (b)、(c) pore size distribution of different samples

    图  4  不同样品的NH3-TPD谱图

    Figure  4  NH3-TPD spectrum of different samples

    图  5  (a) 20 nm;(b) 30 nm;(c) 40 nm HZSM-5在150 ℃和350 ℃下的Py-IR谱图

    Figure  5  Py-IR spectra of (a) 20 nm; (b) 30 nm; (c) 40 nm HZSM-5 at 150 ℃ and 350 ℃

    图  6  不同样品的27Al MAS NMR光谱

    Figure  6  27Al MAS NMR spectrum of different samples

    图  7  不同催化剂上甲醇转化率随时间的变化关系

    Figure  7  The relation of methanol conversion with the time on stream (TOS) over different catalysts

    图  8  不同催化剂上MTA反应中产物选择性随时间的变化关系(a) 20 nm HZSM-5,(b) 30 nm HZSM-5,(c) 40 nm HZSM-5

    Figure  8  The selectivity of products for MTA with the time on stream (TOS) over different catalyst (a) 20 nm HZSM-5, (b) 30 nm HZSM-5, (c) 40 nm HZSM-5

    表  1  催化剂的结构性质

    Table  1  Textural properties of the catalysts

    SamplesSBETa
    (m2·g–1)
    Smicrob
    (m2·g–1)
    Smesoc
    (m2·g–1)
    Vtotald
    (cm3·g–1)
    Vmicroe
    (cm3·g–1)
    Vmesof
    (cm3·g–1)
    Si/Alg
    20 nm HZSM-5275.78187.3488.440.160.050.1138
    30 nm HZSM-5201.45133.1168.340.150.070.0943
    40 nm HZSM-5198.37159.5238.850.130.080.0537
    SBETa(surface area calculated by BET), Smicrob (surface area of micropores by t-plot method),Smesoc = SBETa – Smicrob, Vmicroe (micropore volume by t-plot method), Vtotald ( (total pore volume). gICP analysis.
    下载: 导出CSV

    表  2  不同样品的酸性位点浓度

    Table  2  The concentrations of acid sites in different samples

    SamplesThe concentration of acid sites (a.u. ·g–1)
    WeakMediumStrongTotal
    20 nm HZSM-554.3188.73141.39284.43
    30 nm HZSM-550.6460.18166.31277.13
    40 nm HZSM-555.9228.32139.84224.08
    下载: 导出CSV

    表  3  不同样品的B酸和L酸性位点分布

    Table  3  Distribution of B and L acid sites on different samples

    SamplesAmount of B (mmol·g–1) Amount of L (mmol·g–1)B/L
    150 ℃350 ℃Total150 ℃350 ℃Total
    20 nm HZSM-50.0560.0490.105 0.0680.0330.1011.04
    30 nm HZSM-50.0400.0170.0570.0750.0230.0980.58
    40 nm HZSM-50.0250.0120.0370.0460.0150.0610.61
    下载: 导出CSV

    表  4  不同催化剂用于MTA反应的产物选择性

    Table  4  Product selectivity of different catalysts for MTA reaction

    CatalystsProduction selectivity (%)
    C1-2C3C4C5 + BaTbXcC9 + ArodBTX
    20 nm HZSM-54.79.918.13.31.06.153.04.164.160.0
    30 nm HZSM-55.711.724.74.60.75.142.35.353.448.1
    40 nm HZSM-56.716.721.26.86.57.931.13.148.645.5
    Reaction conditions:0.1 MPa,450 ℃,0.5 g catalyst,PCH3OH=20 kPa,WHSV=1.9 h−1,time on stream(TOS)=3 h;Ba=benzene,Tb= toluene,Xc=xylene,Arod=B + T + X + C9 + .
    下载: 导出CSV
  • [1] P TIAN P L, SHEN K, CHEN J Y, FAN T, FANG R Q, LI Y W. Self-Templated formation of Pt@ZIF-8/SiO2 composite with 3D-Ordered macropores and size-selective catalytic properties[J]. Small Methods,2018,2(12):1800219. doi: 10.1002/smtd.201800219
    [2] SHEN K, CAI S, LING R, XIE D, LI X, SUN J, WEI J, SUN X. Flexible, three-dimensional ordered macroporous ZnO electrode with enhanced electrochemical performance in lithium-ion batteries[J]. Micropor Mesopor Mater,2019,289:109618. doi: 10.1016/j.micromeso.2019.109618
    [3] YAN H, BLANFORD C F, LYTLE J C, CARTER C B, SMYRL W H, STEIN A. Influence of processing conditions on structures of 3D ordered macroporous metals prepared by colloidal crystal templating[J]. Chem Mater,2001,13(11):4314−4321. doi: 10.1021/cm0105716
    [4] WU Z S, SUN Y, TAN Y Z, YANG S B, FENG X L, MüLLEN K. Three-dimensional graphene-based macro-and mesoporous frameworks for high-performance electrochemical capacitive energy storage[J]. J Am Chem Soc,2012,134(48):19532−19535. doi: 10.1021/ja308676h
    [5] YANG W, YANG W, KONG L SONG A L, QIN X J. Synthesis of three-dimensional hierarchical porous carbon for high-performance supercapacitors[J]. Ionics,2018,24(10):3133−3141. doi: 10.1007/s11581-017-2432-z
    [6] FENG J X, ZHENG D, GAO X L, QUE W B, SHI W H, LIU W X, WU F F, CAO X H. Three-dimensional ordered porous carbon for energy conversion and storage applications[J]. Front Energy Res,2020,8:210. doi: 10.3389/fenrg.2020.00210
    [7] CHEN Y, ZHU Y J, CHEN Z G. Three-dimensional ordered macroporous carbon as counter electrodes in dye-sensitized solar cells[J]. Thin Solid Films,2013,539:122−126. doi: 10.1016/j.tsf.2013.05.096
    [8] ARANDIYAN H, DAI H X, JI K, SUN H Y, LI J H. Pt nanoparticles embedded in colloidal crystal template derived 3D ordered macroporous Ce0.6Zr0.3Y0.1O2: highly efficient catalysts for methane combustion[J]. ACS Catal,2015,5(3):1781−1793. doi: 10.1021/cs501773h
    [9] XUE H, TANG J, GONG H, GUO H, FAN X L, WANG T, HE J P, YAMAUCHI Y. Fabrication of PdCo bimetallic nanoparticles anchored on three-dimensional ordered N-doped porous carbon as an efficient catalyst for oxygen reduction reaction[J]. ACS Appl Mater Interfaces,2016,8(32):20766−20771. doi: 10.1021/acsami.6b05856
    [10] DAVIS M E. Ordered porous materials for emerging applications[J]. Nature,2002,417(6891):813−821. doi: 10.1038/nature00785
    [11] CHEN H Y, WYDRA J, ZHANG X Y, LEE P S, WANG Z P, FAN W, TSAPATSIS M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure[J]. J Am Chem Soc,2011,133(32):12390−12393. doi: 10.1021/ja2046815
    [12] PéREZ-RAMíREZ J, CHRISTENSEN C H, EGEBLAD K, CHRISTENSEND C H. GROENEF J C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chem Soc Rev,2008,37(11):2530−2542. doi: 10.1039/b809030k
    [13] HARTMANN M. Hierarchical zeolites: a proven strategy to combine shape selectivity with efficient mass transport[J]. Angew Chem Int Ed,2004,43(44):5880−5882. doi: 10.1002/anie.200460644
    [14] 陈思姝, 李光兰, 谢洋洋. 胶体晶体模板法制备三维有序多孔碳材料及其电化学性能[J]. 中国科学: 化学,2015,45(6):614−623.

    CHEN Si-mei, LI Guang-lan, XIE Yang-yang. Preparation of three-dimensional ordered porous carbon materials and their electrochemical properties by colloidal crystal template method[J]. Sci China Chem,2015,45(6):614−623.
    [15] YU C, TIAN B, FAN J, STUCKY G D, ZHAO D Y. Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers[J]. Chem Commun,2001,24:2726−2727.
    [16] KIM J M, RYOO R. Synthesis of MCM-48 single crystals[J]. Chem Commun,1998,2:259−260.
    [17] JACOBSEN C J H, MADSEN C, JANSSENS T V W, JJAKOBSENB H, SKIBSTED. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy[J]. Micropor Mesopor Mater, 2000, 39 (1–2): 393–401.
    [18] SCHMIDT I, MADSEN C, JACOBSEN C J H. Confined space synthesis. A novel route to nanosized zeolites[J]. Inorg Chem,2000,39(11):2279−2283. doi: 10.1021/ic991280q
    [19] LI Q, CREASER D, STERTE J. The nucleation period for TPA-silicalite-1 crystallization determined by a two-stage varying-temperature synthesis[J]. Micropor Mesopor Mater, 1999, 31 (1–2): 141–150.
    [20] AGUADO J, SERRANO D P, ESCOLA J M, RODRíGUEZ. Low temperature synthesis and properties of ZSM-5 aggregates formed by ultra-small nanocrystals[J]. Micropor Mesopor Mater, 2004, 75 (1–2): 41–49.
    [21] NIU X J, GAO J, WANG K, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of crystal size on the catalytic performance of H-ZSM-5 and Zn/H-ZSM-5 in the conversion of methanol to aromatics[J]. Fuel Process Technol,2017,157:99−107. doi: 10.1016/j.fuproc.2016.12.006
    [22] KIM H S, KANG S K, ZHANG H X, TIKUE E T, LEE J H, LEE P S. Al-ZSM-5 nanocrystal catalysts grown from Silicalite-1 seeds for methane conversion[J]. Energies,2021,14(2):485. doi: 10.3390/en14020485
    [23] XUE T, CHEN L, WANG Y M, HE M Y. Seed-induced synthesis of mesoporous ZSM-5 aggregates using tetrapropylammonium hydroxide as single template[J]. Micropor Mesopor Mater,2012,156:97−105. doi: 10.1016/j.micromeso.2012.02.022
    [24] MI X T, HOU Z G, LI X G. Controllable synthesis of nanoscaled ZSM-5 aggregates with multivariate channel under the synergistic effect of silicate-1 and TPABr using dual-silica source[J]. Micropor Mesopor Mater,2021,323:111224. doi: 10.1016/j.micromeso.2021.111224
    [25] REN N, YANG Z J, LV X C, SHI J, ZHANG Y H, TANG Y. A seed surface crystallization approach for rapid synthesis of submicron ZSM-5 zeolite with controllable crystal size and morphology[J]. Micropor Mesopor Mater, 2010, 131 (1–3): 103–114.
    [26] FERNáNDEZ-REYES B, MORALES JiMéNEZ S, SáNCHEZ-MARRERO G, MUñOZ-SENMACHE J C, HERNáNDES-MALDONADO A J. Hierarchical three-dimensionally ordered mesoporous carbon (3DOm) zeolite composites for the adsorption of Contaminants of emerging concern[J]. J Hazard Mater Lett,2021,2:100017. doi: 10.1016/j.hazl.2021.100017
    [27] WANG J, YANG M F, SHANG W J, SU X P, HAO Q Q, CHEN H Y, MA X X. Synthesis, characterization and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous-imprinted structure[J]. Micropor Mesopor Mater,2017,252:10−16. doi: 10.1016/j.micromeso.2017.06.012
    [28] YOKOI T, SAKAMOTO Y, TERASAKI O, KUBOTA Y, OKUBO T, TATSUMI T. Periodic arrangement of silica nanospheres assisted by amino acids[J]. J Am Chem Soc,2006,128(42):13664−13665. doi: 10.1021/ja065071y
    [29] FAN W, SNYDER M A, KUMAR S, LEE P S, YOO W C, MCCORMICK A V, LEE PENN R, STEIN A, TSAPATSIS, M. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity[J]. Nat Mater,2008,7(12):984−991. doi: 10.1038/nmat2302
    [30] WANG Z, DORNATH P, CHANG C C, CHEN H Y, FAN W. Confined synthesis of three-dimensionally ordered mesoporous-imprinted zeolites with tunable morphology and Si/Al ratio[J]. Micropor Mesopor Mater,2013,181:8−16. doi: 10.1016/j.micromeso.2013.07.010
    [31] GIERSZAL K P, JARONIEC M. Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template[J]. J Am Chem Soc,2006,128(31):10026−10027. doi: 10.1021/ja0634831
    [32] CHEN H Y, WYDRA J, ZHANG X Y, LEE P S, WANG Z P, FAN W, TSAPATSIS M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure[J]. J Am Chem Soc,2011,133(32):12390−12393. doi: 10.1021/ja2046815
    [33] BI Y, WANG Y L, CHEN X, YU Z G, XU L. Methanol aromatization over HZSM-5 catalysts modified with different zinc salts[J]. Chin J Catal,2014,35(10):1740−1751. doi: 10.1016/S1872-2067(14)60145-5
    [34] NIU X J, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Micropor Mesopor Mater,2014,197:252−261. doi: 10.1016/j.micromeso.2014.06.027
    [35] WEI Z H, XIA T F, LIU M H, CAO Q S, XU Y R, ZHU K, ZHU X D. Alkaline modification of ZSM-5 catalysts for methanol aromatization: The effect of the alkaline concentration[J]. Front Chem Sci Eng,2015,9(4):450−460. doi: 10.1007/s11705-015-1542-2
    [36] WANG Z L, CHU W F, ZHAO Z C, LIU Z M, CHEN H Y, XIAO D, GONG K, LI F, LI X J, HOU G J. The role of organic and inorganic structure-directing agents in selective Al substitution of zeolite[J]. J Phys Chem Lett,2021,12(38):9398−9406. doi: 10.1021/acs.jpclett.1c01448
    [37] WAN Z J, WU W, LI G, WANG C F, YANG H, ZHANG D K. Effect of SiO2/Al2O3 ratio on the performance of nanocrystal ZSM-5 zeolite catalysts in methanol to gasoline conversion[J]. Appl Catal A-gen,2016,523:312−320. doi: 10.1016/j.apcata.2016.05.032
    [38] HE Y P, LIU M, DAI C Y, XU S T, WEI Y X, LIU Z M, GUO X W. Modification of nanocrystalline HZSM-5 zeolite with tetrapropylammonium hydroxide and its catalytic performance in methanol to gasoline reaction[J]. Chin J Catal,2013,34(6):1148−1158. doi: 10.1016/S1872-2067(12)60579-8
    [39] LIN X L, FAN Y, LIU Z H, SHI G, LIU H Y, BAO X J. A novel method for enhancing on-stream stability of fluid catalytic cracking (FCC) gasoline hydro-upgrading catalyst: Post-treatment of HZSM-5 zeolite by combined steaming and citric acid leaching[J]. Catal Today, 2007, 125 (3–4): 185–191.
    [40] ZHANG H B, MA Y C, SONG K S, ZHANG Y H, TANG Y. Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties: effects of accessibility and strength of acid sites[J]. J Catal,2013,302:115−125. doi: 10.1016/j.jcat.2013.03.019
    [41] JIA Y M, SHI Q H, WANG J W, DING C M, ZHANG K. Synthesis, characterization, and catalytic application of hierarchical nano-ZSM-5 zeolite[J]. RSC Advances,2020,10(50):29618−29626. doi: 10.1039/D0RA06040B
    [42] HU Z J, ZHANG H B, WANG L, ZHANG H X, ZAHNG Y H, XU H L, SHEN W, TANG Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction[J]. Catal Sci Technol,2014,4(9):2891−2895. doi: 10.1039/C4CY00376D
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  1
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-01
  • 录用日期:  2022-07-25
  • 修回日期:  2022-07-12
  • 网络出版日期:  2022-07-28

目录

    /

    返回文章
    返回