Research progress on the design of zeolite-based core-shell structure catalysts and their reaction mechanism for diesel vehicle exhaust deNOx
-
摘要: 柴油机尾气排放的氮氧化物(NOx)是造成环境污染的主要污染源之一。氨选择性催化还原(NH3-SCR)技术是目前最有效的NOx控制技术,而NH3-SCR催化剂的催化活性是该技术的核心。如今,分子筛基NH3-SCR催化剂已在该领域工业化并被广泛应用。但是,随着环保法规日益严苛及柴油机尾气“零排放”要求实施,开发具有更加优异催化活性以及抗中毒性能的分子筛基催化剂,特别是核壳结构催化剂显得尤为重要。本综述着重介绍了三种常用的Beta、ZSM-5、SSZ-13分子筛为内核的核壳结构分子筛基催化剂在NH3-SCR反应中最新的研究进展。还总结了抗高温水热老化,抗硫中毒,抗碳氢中毒以及抗碱金属中毒的反应机理,并解释了核与壳之间的界面效应在该反应中所起的重要作用。最后,对核壳结构分子筛基催化剂未来的发展和应用前景进行了展望。Abstract: Nitrogen oxides (NOx) from diesel engine exhaust is one of the main sources of environmental pollution. Zeolite-based NH3-SCR catalysts have extensively investigated and have shown great promise for the efficient reduction of NOx because of their excellent NH3-SCR performance, robust hydrothermal stability and outstanding N2 selectivity. However, with the increasingly stringent environmental regulations and the implementation of the requirement of “zero emission” of diesel engine exhaust, it is particularly important to develop zeolite-based catalysts with more excellent catalytic activity and anti-poisoning performance, especially core-shell structure catalyst. In this review, we mainly focus on the recent research progress of the core-shell structure zeolite-based catalysts for NH3-SCR reactions with three commonly used Beta, ZSM-5, and SSZ-13 zeolite as the cores, the reaction mechanism of resistance to hydrothermal aging, sulfur poisoning, hydrocarbon poisoning, and alkali metal poisoning, as well as the future development and application prospects of zeolite-based core-shell structure catalysts.
-
Key words:
- NH3-SCR /
- zeolite /
- core-shell structure /
- resistance /
- interfacial effects
-
图 5 (a) Cu-SSZ-13和 (b-c) Cu-SSZ-13@CZO的TEM照片,(d) CZO外壳的SAED照片,(e) Cu-SSZ-13@CZO的线扫图以及 (f-l) Cu-SSZ-13@CZO的EDS图[25]
Figure 5 Representative TEM results of (a) Cu-SSZ-13, (b-c) Cu-SSZ-13@CZO, (d) SAED patterns for the CZO shell, (e) line scanning of Cu-SSZ-13@CZO and (f-l) EDS mapping of Cu-SSZ-13@CZO[25]
(with permission from ACS Pubilcations)
图 6 Fe/Beta@SBA-15-1催化剂的TEM(a)和HR-TEM图像(b)和(c);Fe/Beta@SBA-15-2催化剂的TEM图像(d)、(e)和SAED图(f);Fe/Beta@SBA-15-2的(g)STEM图像、(h)EDS图和(i)线扫图[18]
Figure 6 TEM (a) and HR-TEM images (b) and (c) of Fe/Beta@SBA-15-1 catalyst; TEM image (d), (e) and the SAED pattern (f) of Fe/Beta@SBA-15-2 catalyst; (g) the STEM image, (h) the mapping elemental analyses and (i) the line scanning of a single Fe/Beta@SBA-15-2 microsphere[18]
(with permission from Wiley)
表 1 文献中报道的典型分子筛基核壳结构催化剂在NH3-SCR中的活性
Table 1 Activity of typical zeolite-based core-shell catalysts in NH3-SCR reaction as reported in the literatures
Zeolite based core-shell
catalystsLow-temperature activity
(t50 /℃)Temperature range
(t90 /℃)Test condition Ref. Fe-Beta@CeO2 183 225−565 [NO] = [NH3] = 5.0×10−4, [H2O] = 5%, [O2] = 3%, N2 balance, and GHSV = 50000 h−1 [14] Fe/Beta@Meso-CeO2 190 225−525 [NO] = [NH3] = 5.0×10−4, [O2] = 3%, N2 balance, and GHSV = 125000 h−1 [15] MoFe/Beta@CeO2 200 225−600 [NO] = [NH3] = 5.0×10−4, [H2O] = 10%, [O2] = 3%,
N2 balance, and GHSV = 50000 h−1[16] Fe/Beta@TiO2 275 450 [NO] = [NH3] = [C3H6] = 5.0×10−4, [O2] = 3%, [H2O] = 5%, N2 balance, and GHSV = 50000 h−1 [17] Fe/Beta@SBA-15 270 325−600 [NO] = [NH3] = 5.0×10−4, [O2] = 3%, N2 balance, and GHSV = 125000 h−1 [18] Fe-ZSM-5@CeO2 175 250−400 [NO] = [NH3] = 5.0×10−4, [O2] = 5%, N2 balance, and GHSV = 177000 h−1 [19] Fe-ZSM-5@Ce/mesoporous-silica 200 280−480 [NO] = [NH3] = 1.0×10−3, [O2] = 5%, N2 balance, and GHSV = 20000 h−1 [20] Fe-ZSM-5@silicalite-1 225 275−450 [NO] = [NH3] = 1.0×10−3, [O2] = 5%, N2 balance, and GHSV = 5510 h−1 [21] Cu/ZSM-5@CeO2 180 225−550 [NO] = [NH3] = 1.0×10−3, [O2] = 8%, He balance, and GHSV = 50000 h−1 [22] meso-Cu-SSZ-13@MAS 175 225−550 [NO] = [NH3] = 5.0×10−4, [H2O] = 5%, [O2] = 5%, N2 balance, and GHSV = 400000 h−1 [23] Cu-Ce-La/SSZ- 13@ZSM-5 165 225−450 [NO] = [NH3] = 5.0×10−4, [O2] = 5%, N2 balance, and GHSV = 600000 h−1 [24] Cu-SSZ-13@CZO 210 235−525 [NO] = [NH3] = 5.0×10−4, [O2] = 5%, N2 balance, and GHSV = 60000 h−1 [25] -
[1] DATYE A K, VOTSMEIER M. Opportunities and challenges in the development of advanced materials for emission control catalysts[J]. Nat Mater,2021,20(8):1049−1059. doi: 10.1038/s41563-020-00805-3 [2] HAN L, CAI S, GAO M, HASEGAWA J-Y, WANG P, ZHANG J, SHI L, ZHANG D. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects[J]. Chem Rev,2019,119(19):10916−10976. doi: 10.1021/acs.chemrev.9b00202 [3] SHAN Y, DU J, ZHANG Y, SHAN W, SHI X, YU Y, ZHANG R, MENG X, XIAO F-S, HE H. Selective catalytic reduction of NOx with NH3: opportunities and challenges of Cu-based small-pore zeolites[J]. Natl Sci Rev,2021,8:nwab010. doi: 10.1093/nsr/nwab010 [4] ANDANA T, RAPPÉ K G, GAO F, SZANYI J, PEREIRA-HERNANDEZ X, WANG Y. Recent advances in hybrid metal oxide-zeolite catalysts for low-temperature selective catalytic reduction of NOx by ammonia[J]. Appl Catal B: Environ,2021,291:120054. doi: 10.1016/j.apcatb.2021.120054 [5] LAI J-K, WACHS I E. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts[J]. ACS Catal,2018,8(7):6537−6551. doi: 10.1021/acscatal.8b01357 [6] PENG C, LIANG J, PENG H, YAN R, LIU W, WANG Z, WU P, WANG X. Design and synthesis of Cu/ZSM-5 catalyst via a facile one-pot dual-template strategy with controllable Cu content for removal of NOx[J]. Ind Eng Chem Res,2018,57(44):14967−14976. doi: 10.1021/acs.iecr.8b03432 [7] LIN Q, LIU S, XU S, YAO P, PEI M, XU H, DAN Y, CHEN Y. Spotlight on Cu/SAPO-34 with high hydrothermal stability induced by a small amount of SSZ-39[J]. Chem Eng J,2022,446:137283. doi: 10.1016/j.cej.2022.137283 [8] LIU J, CHENG H, ZHENG H, ZHANG L, LIU B, SONG W, LIU J, ZHU W, LI H, ZHAO Z. Insight into the potassium poisoning effect for selective catalytic reduction of NOx with NH3 over Fe/Beta[J]. ACS Catal,2021,11(24):14727−14739. doi: 10.1021/acscatal.1c04497 [9] ZHANG J, LIANG J, PENG H, MI Y, LUO P, XU H, HE M, WU P. Cost-effective fast-synthesis of chabazite zeolites for the reduction of NOx[J]. Appl Catal B: Environ,2021,292:120163. [10] LIN Q, XU S, ZHAO H, LIU S, XU H, DAN Y, CHEN Y. Highlights on key roles of y on the hydrothermal stability at 900 ℃ of Cu/SSZ-39 for NH3-SCR[J]. ACS Catal,2022,12(22):14026−14039. doi: 10.1021/acscatal.2c03757 [11] LI J, MENG X, XIAO F-S. Zeolites for control of NO emissions: Opportunities and challenges[J]. Chem Catal,2022,2(2):253−261. doi: 10.1016/j.checat.2021.11.011 [12] BORFECCHIA E, BEATO P, SVELLE S, OLSBYE U, LAMBERTI C, BORDIGA S. Cu-CHA - a model system for applied selective redox catalysis[J]. Chem Soc Rev,2018,47(22):8097−8133. doi: 10.1039/C8CS00373D [13] BEALE A M, GAO F, LEZCANO-GONZALEZ I, PEDEN C H, SZANYI J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials[J]. Chem Soc Rev,2015,44(20):7371−405. doi: 10.1039/C5CS00108K [14] LIU J, LIU J, ZHAO Z, WEI Y, SONG W. Fe-Beta@CeO2 core-shell catalyst with tunable shell thickness for selective catalytic reduction of NOx with NH3[J]. AlChE J,2017,63(10):4430−4441. doi: 10.1002/aic.15743 [15] LIU J, LIU J, ZHAO Z, DUAN Z, WEI Y, SONG W, SUN Y. Fe/Beta@Meso-CeO2 nanostructure core-shell catalyst: Remarkable enhancement of potassium poisoning resistance[J]. Catal Surv Asia,2018,22(4):181−194. doi: 10.1007/s10563-018-9251-8 [16] LIU J, DU Y, LIU J, ZHAO Z, CHENG K, CHEN Y, WEI Y, SONG W, ZHANG X. Design of MoFe/Beta@CeO2 catalysts with a core-shell structure and their catalytic performances for the selective catalytic reduction of NO with NH3[J]. Appl Catal B: Environ,2017,203:704−714. doi: 10.1016/j.apcatb.2016.10.039 [17] LIU J, LIU J, ZHAO Z, WEI Y, SONG W, LI J, ZHANG X. A unique Fe/Beta@TiO2 core-shell catalyst by small-grain molecular sieve as the core and TiO2 nanosize thin film as the shell for the removal of NOx[J]. Ind Eng Chem Res,2017,56(20):5833−5842. doi: 10.1021/acs.iecr.7b00740 [18] LIU J, LIU J, ZHAO Z, TAN J, WEI Y, SONG W. Fe/Beta@SBA-15 core-shell catalyst: Interface stable effect and propene poisoning resistance for no abatement[J]. AlChE J,2018,64(11):3967−3978. doi: 10.1002/aic.16210 [19] CHEN L, WANG X, CONG Q, MA H, LI S, LI W. Design of a hierarchical Fe-ZSM-5@CeO2 catalyst and the enhanced performances for the selective catalytic reduction of NO with NH3[J]. Chem Eng J,2019,369:957−967. doi: 10.1016/j.cej.2019.03.055 [20] ZHANG L, DU T, QU H, CHI B, ZHONG Q. Synthesis of Fe-ZSM-5@Ce/mesoporous-silica and its enhanced activity by sequential reaction process for NH3-SCR[J]. Chem Eng J,2017,313:702−710. doi: 10.1016/j.cej.2016.12.108 [21] DU T, QU H, LIU Q, ZHONG Q, MA W. Synthesis, activity and hydrophobicity of Fe-ZSM-5@silicalite-1 for NH3-SCR[J]. Chem Eng J,2015,262:1199−1207. doi: 10.1016/j.cej.2014.09.119 [22] DI Z, WANG H, ZHANG R, CHEN H, WEI Y, JIA J. ZSM-5 core-shell structured catalyst for enhancing low-temperature NH3-SCR efficiency and poisoning resistance[J]. Appl Catal A: Gen,2022,630:118438. doi: 10.1016/j.apcata.2021.118438 [23] ZHANG T, QIU F, LI J. Design and synthesis of core-shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NO with NH3: Enhancement of activity, hydrothermal stability and propene poisoning resistance[J]. Appl Catal B: Environ,2016,195:48−58. doi: 10.1016/j.apcatb.2016.04.058 [24] CHEN Z, LIU L, QU H, ZHOU B, XIE H, ZHONG Q. Migration of cations and shell functionalization for Cu-Ce-La/SSZ-13@ZSM-5: The contribution to activity and hydrothermal stability in the selective catalytic reduction reaction[J]. J Catal,2020,392:217−230. doi: 10.1016/j.jcat.2020.10.005 [25] JIA L, LIU J, HUANG D, ZHAO J, ZHANG J, LI K, LI Z, ZHU W, ZHAO Z, LIU J. Interface engineering of a bifunctional Cu-SSZ-13@CZO core-shell catalyst for boosting potassium ion and SO2 tolerance[J]. ACS Catal,2022,12(18):11281−11293. doi: 10.1021/acscatal.2c03048 [26] ZHAO Q, CHEN B, BAI Z, YU L, CROCKER M, SHI C. Hybrid catalysts with enhanced C3H6 resistance for NH3-SCR of NOx[J]. Appl Catal B: Environ,2019,242:161−170. doi: 10.1016/j.apcatb.2018.09.072 [27] LIU H, WANG J, YU T, FAN S, SHEN M. The role of various iron species in Fe-β catalysts with low iron loadings for NH3-SCR[J]. Catal Sci Technol,2014,4(5):1350−1356. doi: 10.1039/C3CY01026K [28] XIA Y, ZHAN W, GUO Y, GUO Y, LU G. Fe-Beta zeolite for selective catalytic reduction of NOx with NH3: Influence of Fe content[J]. Chin J Catal,2016,37(12):2069−2078. doi: 10.1016/S1872-2067(16)62534-2 [29] BOUBNOV A, CARVALHO H W, DORONKIN D E, GUNTER T, GALLO E, ATKINS A J, JACOB C R, GRUNWALDT J D. Selective catalytic reduction of NO over Fe-ZSM-5: Mechanistic insights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy[J]. J Am Chem Soc,2014,136(37):13006−13015. doi: 10.1021/ja5062505 [30] GRÜNERT W, KYDALA GANESHA P, ELLMERS I, PÉREZ VÉLEZ R, HUANG H, BENTRUP U, SCHÜNEMANN V, BRÜCKNER A. Active sites of the selective catalytic reduction of NO by NH3 over Fe-ZSM-5: Combining reaction kinetics with postcatalytic mössbauer spectroscopy at cryogenic temperatures[J]. ACS Catal,2020,10(5):3119−3130. doi: 10.1021/acscatal.9b04627 [31] WANG H, JIA J, LIU S, CHEN H, WEI Y, WANG Z, ZHENG L, WANG Z, ZHANG R. Highly efficient NO abatement over Cu-ZSM-5 with special nanosheet features[J]. Environ Sci Technol,2021,55(8):5422−5434. doi: 10.1021/acs.est.0c08684 [32] PENG C, YAN R, PENG H, MI Y, LIANG J, LIU W, WANG X, SONG G, WU P, LIU F. One-pot synthesis of layered mesoporous ZSM-5 plus Cu ion-exchange: Enhanced NH3-SCR performance on Cu-ZSM-5 with hierarchical pore structures[J]. J Hazard Mater,2020,385:121593. doi: 10.1016/j.jhazmat.2019.121593 [33] SCHMIDT J E, OORD R, GUO W, POPLAWSKY J D, WECKHUYSEN B M. Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts[J]. Nat Commun,2017,8(1):1666. doi: 10.1038/s41467-017-01765-0 [34] PAOLUCCI C, KHURANA I, PAREKH A A, LI S, SHIH A J, LI H, DI IORIO J R, ALBARRACIN-CABALLERO J D, YEZERETS A, MILLER J T, DELGASS W N, RIBEIRO F H, SCHNEIDER W F, GOUNDER R. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction[J]. Science,2017,357(6354):898−903. doi: 10.1126/science.aan5630 [35] BECHER J, SANCHEZ D F, DORONKIN D E, ZENGEL D, MEIRA D M, PASCARELLI S, GRUNWALDT J-D, SHEPPARD T L. Chemical gradients in automotive Cu-SSZ-13 catalysts for NOx removal revealed by operando X-ray spectrotomography[J]. Nat Catal,2020,4(1):46−53. doi: 10.1038/s41929-020-00552-3 [36] JANGJOU Y, DO Q, GU Y, LIM L-G, SUN H, WANG D, KUMAR A, LI J, GRABOW L C, EPLING W S. Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure[J]. ACS Catal,2018,8(2):1325−1337. doi: 10.1021/acscatal.7b03095 [37] MOLOKOVA A Y, BORFECCHIA E, MARTINI A, PANKIN I A, ATZORI C, MATHON O, BORDIGA S, WEN F, VENNESTROM P N R, BERLIER G, JANSSENS T V W, LOMACHENKO K A. SO2 poisoning of Cu-CHA deNOx catalyst: The most vulnerable Cu species identified by X-ray absorption spectroscopy[J]. JACS Au,2022,2(4):787−792. doi: 10.1021/jacsau.2c00053 [38] XIE R, MA L, LI Z, QU Z, YAN N, LI J. Review of sulfur promotion effects on metal oxide catalysts for NOx emission control[J]. ACS Catal,2021,11(21):13119−13139. doi: 10.1021/acscatal.1c02197 [39] HU W, HE J, LIU X, YU H, JIA X, YAN T, HAN L, ZHANG D. SO2- and H2O-tolerant catalytic reduction of NOx at a low temperature via engineering polymeric VOx species by CeO2[J]. Environ Sci Technol,2022,56(8):5170−5178. doi: 10.1021/acs.est.1c08715 [40] ZHU N, SHAN W, SHAN Y, DU J, LIAN Z, ZHANG Y, HE H. Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO with NH3[J]. Chem Eng J,2020,388:124250. doi: 10.1016/j.cej.2020.124250 [41] WANG P, YAN L, GU Y, KUBOON S, LI H, YAN T, SHI L, ZHANG D. Poisoning-resistant NOx reduction in the presence of alkaline and heavy metals over H-SAPO-34-supported Ce-promoted Cu-based catalysts[J]. Environ Sci Technol,2020,54(10):6396−6405. doi: 10.1021/acs.est.0c00100 [42] CUI Y, WANG Y, MEI D, WALTER E D, WASHTON N M, HOLLADAY J D, WANG Y, SZANYI J, PEDEN C H F, GAO F. Revisiting effects of alkali metal and alkaline earth co-cation additives to Cu/SSZ-13 selective catalytic reduction catalysts[J]. J Catal,2019,378:363−375. doi: 10.1016/j.jcat.2019.08.028 [43] HEO I, SUNG S, PARK M B, CHANG T S, KIM Y J, CHO B K, HONG S B, CHOUNG J W, NAM I-S. Effect of hydrocarbon on DeNOx performance of selective catalytic reduction by a combined reductant over Cu-containing zeolite catalysts[J]. ACS Catal,2019,9(11):9800−9812. doi: 10.1021/acscatal.9b02763 [44] MARTINOVIC F, DEORSOLA F A, ARMANDI M, BONELLI B, PALKOVITS R, BENSAID S, PIRONE R. Composite Cu-SSZ-13 and CeO2-SnO2 for enhanced NH3-SCR resistance towards hydrocarbon deactivation[J]. Appl Catal B: Environ,2021,282:119536. doi: 10.1016/j.apcatb.2020.119536 [45] MA L, LI J, CHENG Y, LAMBERT C K, FU L. Propene poisoning on three typical Fe-zeolites for SCR of NOx with NH3: from mechanism study to coating modified architecture[J]. Environ Sci Technol,2012,46(3):1747−54. doi: 10.1021/es203070g [46] LEISTNER K, OLSSON L. Deactivation of Cu/SAPO-34 during low-temperature NH3-SCR[J]. Appl Catal B: Environ,2015,165:192−199. doi: 10.1016/j.apcatb.2014.09.067 [47] YU T, WANG J, SHEN M, WANG J, LI W. The influence of CO2 and H2O on selective catalytic reduction of NO by NH3 over Cu/SAPO-34 catalyst[J]. Chem Eng J,2015,264:845−855. doi: 10.1016/j.cej.2014.12.017 [48] LIANG J, MI Y, SONG G, PENG H, LI Y, YAN R, LIU W, WANG Z, WU P, LIU F. Environmental benign synthesis of Nano-SSZ-13 via FAU trans-crystallization: Enhanced NH3-SCR performance on Cu-SSZ-13 with nano-size effect[J]. J Hazard Mater,2020,398:122986. doi: 10.1016/j.jhazmat.2020.122986 [49] GRAMIGNI F, NASELLO N D, USBERTI N, IACOBONE U, SELLERI T, HU W, LIU S, GAO X, NOVA I, TRONCONI E. Transient kinetic analysis of low-temperature NH3-SCR over Cu-CHA catalysts reveals a quadratic dependence of Cu reduction rates on CuII[J]. ACS Catal,2021,11(8):4821−4831. doi: 10.1021/acscatal.0c05362 [50] LIN Q-J, PEI M-M, YAO P, XU S, XU S-H, LIU S, XU H-D, DAN Y, CHEN Y-Q. Determining hydrothermal deactivation mechanisms on Cu/SAPO-34 NH3-SCR catalysts at low- and high-reaction regions: Establishing roles of different reaction sites[J]. Rare Met,2022,41(6):1899−1910. doi: 10.1007/s12598-021-01933-8 [51] LIN Q, LIU S, XU S, XU S, PEI M, YAO P, XU H, DAN Y, CHEN Y. Comprehensive effect of tuning Cu/SAPO-34 crystals using PEG on the enhanced hydrothermal stability for NH3-SCR[J]. Catal Sci Technol,2021,11(23):7640−7651. doi: 10.1039/D1CY01194D [52] XU H, LIN C, LIN Q, FENG X, ZHANG Z, WANG Y, CHEN Y. Grain size effect on the high-temperature hydrothermal stability of Cu/SAPO-34 catalysts for NH3-SCR[J]. J Environ Chem Eng,2020,8(6):104559. doi: 10.1016/j.jece.2020.104559 [53] LIN Q, LIU S, XU S, LIU J, XU H, CHEN Y, DAN Y. Fabricate surface structure-stabilized Cu/BEA with hydrothermal-resistant via si-deposition for NOx abatement[J]. Mol Catal,2020,495:111153. doi: 10.1016/j.mcat.2020.111153 [54] LIN Q, LIU J, LIU S, XU S, LIN C, FENG X, WANG Y, XU H, CHEN Y. Barium-promoted hydrothermal stability of monolithic Cu/BEA catalyst for NH3-SCR[J]. Dalton Trans,2018,47(42):15038−15048. doi: 10.1039/C8DT03156H [55] CAI Z, ZHANG G, TANG Z, ZHANG J. Engineering yolk-shell MnFe@CeOx@TiOx nanocages as a highly efficient catalyst for selective catalytic reduction of NO with NH3 at low temperatures[J]. Nanoscale,2022,14(34):12281−12296. doi: 10.1039/D2NR02255A -