留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载体形貌对Ni3Fe/CeO2催化剂甲烷干重整反应性能的影响

张静文 李宇斌 王倩倩 李莎 邱丽 李瑞丰 闫晓亮

张静文, 李宇斌, 王倩倩, 李莎, 邱丽, 李瑞丰, 闫晓亮. 载体形貌对Ni3Fe/CeO2催化剂甲烷干重整反应性能的影响[J]. 燃料化学学报(中英文), 2023, 51(12): 1772-1781. doi: 10.19906/j.cnki.JFCT.2023040
引用本文: 张静文, 李宇斌, 王倩倩, 李莎, 邱丽, 李瑞丰, 闫晓亮. 载体形貌对Ni3Fe/CeO2催化剂甲烷干重整反应性能的影响[J]. 燃料化学学报(中英文), 2023, 51(12): 1772-1781. doi: 10.19906/j.cnki.JFCT.2023040
ZHANG Jing-wen, LI Yu-bin, WANG Qian-qian, LI Sha, QIU Li, LI Rui-feng, YAN Xiao-liang. Effect of support morphology of Ni3Fe/CeO2 on catalytic performance for dry reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1772-1781. doi: 10.19906/j.cnki.JFCT.2023040
Citation: ZHANG Jing-wen, LI Yu-bin, WANG Qian-qian, LI Sha, QIU Li, LI Rui-feng, YAN Xiao-liang. Effect of support morphology of Ni3Fe/CeO2 on catalytic performance for dry reforming of methane[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1772-1781. doi: 10.19906/j.cnki.JFCT.2023040

载体形貌对Ni3Fe/CeO2催化剂甲烷干重整反应性能的影响

doi: 10.19906/j.cnki.JFCT.2023040
基金项目: 国家自然科学基金(22108189)资助
详细信息
    通讯作者:

    E-mail: yanxiaoliang@tyut.edu.cn

  • 中图分类号: O643

Effect of support morphology of Ni3Fe/CeO2 on catalytic performance for dry reforming of methane

Funds: The project was supported by the National Natural Science Foundation of China (22108189)
  • 摘要: 通过改变水热法条件合成了不同形貌CeO2载体(棒状CeO2-R、立方体CeO2-C和多面体CeO2-P),并用浸渍法制备了Ni3Fe/CeO2催化剂,继而研究了不同载体形貌Ni3Fe/CeO2催化剂对其甲烷干重整反应性能的影响。采用X射线衍射、N2吸附-脱附、透射电镜、拉曼光谱、X射线光电子能谱、热重等对反应前后催化剂结构进行表征。结果表明,Ni3Fe/CeO2-R具有较大比表面积和较高的氧空位浓度,在甲烷干重整反应中表现出了优异的催化反应活性。800 ℃时,CH4和CO2的转化率分别为82%和91%,且反应10 h性能稳定并且其积炭石墨化程度较低。同时,通过CeO2-R载体氧空位对CO2活化,有效抑制了对亲氧性Fe物种的过度氧化行为,反应前后催化剂Ni3Fe合金结构保持稳定,具有良好的抗脱合金能力。
  • FIG. 2804.  FIG. 2804.

    FIG. 2804.  FIG. 2804.

    图  1  不同形貌CeO2的XRD谱图

    Figure  1  XRD patterns of CeO2 with different morphologies

    图  2  不同形貌CeO2的TEM图

    Figure  2  TEM images of CeO2 with different morphologies (a) CeO2-R, (b) CeO2-C, (c) CeO2-P

    图  3  不同形貌CeO2的N2吸附-脱附等温线(a)和孔径分布曲线(b)

    Figure  3  (a) N2 adsorption-desorption isotherms and (b) pore size distributions of CeO2 with different morphologies

    图  4  焙烧后(a)和还原后(b)Ni3Fe/CeO2催化剂的XRD谱图

    Figure  4  XRD patterns of the Ni3Fe/CeO2 catalysts after (a) calcination and (b) reduction

    图  5  Ni3Fe/CeO2催化剂的UV Raman谱图(a)和D/F2g强度比值(b)

    Figure  5  (a) UV Raman spectra of the Ni3Fe/CeO2 catalysts and (b) the corresponding peak intensity ratios ID/IF2g

    图  6  Ni3Fe/CeO2催化剂Ce 3d(a)和O 1s(b)的XPS谱图

    Figure  6  (a) Ce 3d and (b) O 1s XPS spectra of the Ni3Fe/CeO2 catalysts

    图  7  Ni3Fe/CeO2催化剂的干重整催化活性

    Figure  7  The catalytic performance of the Ni3Fe/CeO2 catalysts for DRM

    图  8  Ni3Fe/CeO2催化剂的干重整稳定性

    Figure  8  Stability test of the Ni3Fe/CeO2 catalystsfor DRM

    图  9  稳定性后Ni3Fe/CeO2催化剂的XRD谱图

    Figure  9  XRD patterns of the Ni3Fe/CeO2 catalysts after stability test

    图  10  稳定性后Ni3Fe/CeO2催化剂的Raman谱图

    Figure  10  Raman spectra of the Ni3Fe/CeO2 catalysts after stability test

    图  11  稳定性后Ni3Fe/CeO2催化剂的TG曲线

    Figure  11  TG curves of the Ni3Fe/CeO2 catalysts after stability test

    图  12  Ni3Fe/CeO2催化剂的CH4-TPSR(a)和CO2-TPSR(b)曲线

    Figure  12  (a) CH4-TPSR and (b) CO2-TPSR profiles of the Ni3Fe/CeO2 catalysts

    图  13  Ni/CeO2-R催化剂的DRM稳定性

    Figure  13  Stability test of the Ni/CeO2-R catalyst for DRM

    图  14  稳定性后Ni/CeO2-R催化剂的TG曲线

    Figure  14  TG curve of the Ni/CeO2-R catalyst after stability test

    图  15  Ni/CeO2-R、Fe/CeO2-R、Ni3Fe/CeO2-R催化剂的H2-TPR曲线

    Figure  15  H2-TPR profiles of the Ni/CeO2-R, Fe/CeO2-R and Ni3Fe/CeO2-R catalysts

    表  1  不同形貌CeO2的物理结构特性参数

    Table  1  Physical structural characteristics of CeO2 with different morphologies

    SampleSBET /(m2·g−1)Pore volume /(cm3·g−1)Pore size /nm
    CeO2-R950.238
    CeO2-C300.1313
    CeO2-P390.076
    下载: 导出CSV

    表  2  Ni3Fe/CeO2催化剂表面物种的定量分析

    Table  2  Quantitative XPS analysis results of the Ni3Fe/CeO2 catalysts

    SampleCe3 + /(Ce3 + + Ce4 + )Ο/(Ο + Ο + Ο
    Ni3Fe/CeO2-R0.1470.545
    Ni3Fe/CeO2-C0.0970.401
    Ni3Fe/CeO2-P0.0860.239
    下载: 导出CSV
  • [1] WANG Q Q, WANG W, CAO M, LI S, WANG P F, HE J Q, LI R F, YAN X L. Effect of interstitial carbon atoms in core-shell Ni3ZnC0.7/Al2O3 catalyst for high-performance dry reforming of methane[J]. Appl Catal B: Environ,2022,317:121806. doi: 10.1016/j.apcatb.2022.121806
    [2] ZHANG M, ZHANG J F, ZHOU Z L, ZHANG Q D, TAN Y S, HAN Y Z. Effects of calcination atmosphere on the performance of the co-precipitated Ni/ZrO2 catalyst in dry reforming of methane[J]. Can J Chem Eng,2021,100:S172−S183.
    [3] 付彧, 孙予罕. CH4-CO2重整技术的挑战与展望[J]. 中国科学(化学),2020,50(7):816−831. doi: 10.1360/SSC-2019-0160

    FU Yu, SUN Yu-han. CH4-CO2 reforming: Challenges and outlook[J]. Sci Sin Chim,2020,50(7):816−831. doi: 10.1360/SSC-2019-0160
    [4] SONG Y, OZDEMIR E, RAMESH S, ADISHEV A, SUBRAMANIAN S, HARALE A, ALBUALI M, FADHEL B A, JAMAL A, MOON D, CHOI S H, YAVUZ C T. Dry reforming of methane by stable Ni-Mo nanocatalysts on single-crystalline MgO[J]. Science,2020,367(6479):777−781. doi: 10.1126/science.aav2412
    [5] KIM K Y, LEE J H, LEE H, NOH W Y, KIM E H, RA E C, KIM S K, AN K, LEE J S. Layered double hydroxide-derived intermetallic Ni3GaC0.25 catalysts for dry reforming of methane[J]. ACS Catal,2021,11(17):11091−11102. doi: 10.1021/acscatal.1c02200
    [6] YAN X L, HU T, LIU P, LI S, ZHAO B R, ZHANG Q, JIAO W Y, CHEN S, WANG P F, LU J J, FAN L M, DENG X N, PAN Y X. Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2[J]. Appl Catal B: Environ,2019,246:221−231. doi: 10.1016/j.apcatb.2019.01.070
    [7] DENG J, BU K K, SHEN Y J, ZHANG X Y, ZHANG J P, FAUNGNAWAKIJ K, ZHANG D S. Cooperatively enhanced coking resistance via boron nitride coating over Ni-based catalysts for dry reforming of methane[J]. Appl Catal B: Environ,2021,302:120859.
    [8] WANG D D, LITTLEWOOD P, MARKS T J, STAIR P C, WEITZ E. Coking can enhance product yields in the dry reforming of methane[J]. ACS Catal,2022,12(14):8352−8362. doi: 10.1021/acscatal.2c02045
    [9] 周则龄, 张萌, 张俊峰, 宋法恩, 张清德, 谭猗生, 韩怡卓. 钙钛矿型氧化物负载Ni催化剂上甲烷二氧化碳重整反应研究[J]. 燃料化学学报,2020,48(7):833−841.

    ZHOU Ze-ling, ZHANG Meng, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, TAN Yi-sheng, HAN Yi-zhuo. Methane reforming with carbon dioxide over the perovskite supported Ni catalysts[J]. J Fuel Chem Technol,2020,48(7):833−841.
    [10] MARGOSSIAN T, LARMIER K, KIM S M, KRUMEICH F, MULLER C, COPERET C. Supported bimetallic NiFe nanoparticles through colloid synthesis for improved dry reforming performance[J]. ACS Catal,2017,7(10):6942−6948. doi: 10.1021/acscatal.7b02091
    [11] PENG R F, CHEN Y M, ZHANG B X, LI Z P, CUI X, GUO C W, ZHAO Y C, ZHANG J Y. Tailoring the stability of Ni-Fe/mayenite in methane-carbon dioxide reforming[J]. Fuel,2021,284:118909. doi: 10.1016/j.fuel.2020.118909
    [12] ZHANG T T, LIU Z X, ZHU Y A, LIU Z C, SUI Z J, ZHU K K, ZHOU X G. Dry reforming of methane on Ni-Fe-MgO catalysts: influence of Fe on carbon-resistant property and kinetics[J]. Appl Catal B: Environ,2020,264:118497. doi: 10.1016/j.apcatb.2019.118497
    [13] THEOFANIDIS S A, GALVITA V V, POELMAN H, MARIN G B. Enhanced carbon-resistant dry reforming Fe-Ni catalyst: Role of Fe[J]. ACS Catal,2015,5(5):3028−3039. doi: 10.1021/acscatal.5b00357
    [14] SONG Z W, WANG Q Q, GUO C, LI S, YAN W J, JIAO W Y, QIU L, YAN X L, LI R F. Improved effect of Fe on the stable NiFe/Al2O3 catalyst in low-temperature dry reforming of methane[J]. Ind Eng Chem Res,2020,59(39):17250−17258. doi: 10.1021/acs.iecr.0c01204
    [15] 宋志文. 镍铁合金催化剂的构建及其甲烷干重整抗积炭性能[D]. 太原: 太原理工大学, 2021.

    SONG Zhi-wen. Preparation of highly coke-resistant nickel-iron alloy catalysts for dry reforming of methane[D]. Taiyuan: Taiyuan University of Technology, 2021.
    [16] KIM S M, ABDALA P M, MARGOSSIAN T, HOSSEINI D, FOPPA L, ARMUTLULU A, VAN BEEK W, COMAS-VIVES A, COPERET C, MULLER C. Cooperativity and dynamics increase the performance of NiFe dry reforming catalysts[J]. J Am Chem Soc,2017,139(5):1937−1949. doi: 10.1021/jacs.6b11487
    [17] THEOFANIDIS S A, GALVITA V V, SABBE M, POELMAN H, DETAVERNIER C, MARIN G B. Controlling the stability of a Fe-Ni reforming catalyst: Structural organization of the active components[J]. Appl Catal B: Environ,2017,209:405−416. doi: 10.1016/j.apcatb.2017.03.025
    [18] DE COSTER V, SRINATH N V, THEOFANIDIS S A, PIRRO L, VAN ALBOOM A, POELMAN H, SABBE M K, MARIN G B, GALVITA V V. Looking inside a Ni-Fe/MgAl2O4 catalyst for methane dry reforming via mossbauer spectroscopy and in situ QXAS[J]. Appl Catal B: Environ,2022,300:120720. doi: 10.1016/j.apcatb.2021.120720
    [19] 李睿杰, 章菊萍, 史健, 李孔斋, 刘慧利, 祝星. Ni/CeO2催化剂的金属-载体界面调控及其低温化学链甲烷干重整性能研究[J]. 燃料化学学报,2022,50(11):1458−1470.

    LI Rui-jie, ZHANG Ju-ping, SHI Jian, LI Kong-zhai, LIU Hui-li, ZHU Xing. Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane[J]. J Fuel Chem Technol,2022,50(11):1458−1470.
    [20] LOFBERG A, GUERRERO-CABALLERO J, KANE T, RUBBENS A, JALOWIECKI-DUHAMEL L. Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production[J]. Appl Catal B: Environ,2017,212:159−174. doi: 10.1016/j.apcatb.2017.04.048
    [21] LIU Z Y, GRINTER D C, LUSTEMBERG P G, NGUYEN-PHAN T D, ZHOU Y H, LUO S, WALUYO I, CRUMLIN E J, STACCHIOLA D J, ZHOU J, CARRASCO J, BUSNENGO H F, GANDUGLIA-PIROVANO M V, SENANAYAKE S D, RODRIGUEZ J A. Dry reforming of methane on a highly-active Ni-CeO2 catalyst: Effects of metal-support interactions on C–H bond breaking[J]. Angew Chem Int Ed,2016,55(26):7455−7459. doi: 10.1002/anie.201602489
    [22] MAI H X, SUN L D, ZHANG Y W, SI R, FENG W, ZHANG H P, LIU H C, YAN C H. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes[J]. J Phys Chem B,2005,109(51):24380−24385. doi: 10.1021/jp055584b
    [23] 闫宁, 周安宁, 张亚刚, 杨志远, 贺新福, 张亚婷. CeO2的形貌特征对Ni/CeO2催化剂CO甲烷化性能的影响[J]. 燃料化学学报,2020,48(4):466−475.

    YAN Ning, ZHOU An-ning, ZHANG Ya-gang, YANG Zhi-yuan, HE Xin-fu, ZHANG Ya-ting. Morphologic effect of CeO2 on the catalytic performance of Ni/CeO2 in CO methanation[J]. J Fuel Chem Technol,2020,48(4):466−475.
    [24] WU Z L, LI M J, HOME J, MEYER H M, OVERBURY S H. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption[J]. Langmuir,2010,26(21):16595−16606. doi: 10.1021/la101723w
    [25] FRANCISCO M S P, MASTELARO V R, NASCENTE P A P, FLORENTINO A O. Activity and characterization by XPS, HR-TEM, Raman spectroscopy, and BET surface area of CuO/CeO2-TiO2 catalysts[J]. J Phys Chem B,2001,105:10515−10522. doi: 10.1021/jp0109675
    [26] LIU W M, YANG S Y, ZHANG Q L, HE T Y, LUO Y W, TAO J X, WU D S, PENG H G. Insights into flower-like Al2O3 spheres with rich unsaturated pentacoordinate Al3 + sites stabilizing Ru-CeOx for propane total oxidation[J]. Appl Catal B: Environ,2021,292:120171. doi: 10.1016/j.apcatb.2021.120171
    [27] LI H B, CUI Y Y, LIU Q Q, DAI W L. Insight into the synergism between copper species and surface defects influenced by copper content over copper/ceria catalysts for the hydrogenation of carbonate[J]. ChemCatChem,2018,10(3):619−624. doi: 10.1002/cctc.201701384
    [28] JIANG F, WANG S S, LIU B, LIU J, WANG L, XIAO Y, XU Y B, LIU X H. Insights into the influence of CeO2 crystal facet on CO2 hydrogenation to methanol over Pd/CeO2 catalysts[J]. ACS Catal,2020,10(19):11493−11509. doi: 10.1021/acscatal.0c03324
    [29] JIANG Z Y, JING M Z, FENG X B, XIONG J C, HE C, DOUTHWAITE M, ZHENG L R, SONG W Y, LIU J, QU Z G. Stabilizing platinum atoms on CeO2 oxygen vacancies by metal-support interaction induced interface distortion: mechanism and application[J]. Appl Catal B-Environ,2021,278:119304.
    [30] LIANG D F, WANG Y S, CHEN M Q, XIE X L, LI C, WANG J, YUAN L. Dry reforming of methane for syngas production over attapulgite-derived MFI zeolite encapsulated bimetallic Ni-Co catalysts[J]. Appl Catal B: Environ,2023,322:122088. doi: 10.1016/j.apcatb.2022.122088
    [31] WANG N, QIAN W Z, CHU W, WEI F. Crystal-plane effect of nanoscale CeO2 on the catalytic performance of Ni/CeO2 catalysts for methane dry reforming[J]. Catal Sci Technol,2016,6(10):3594−3605. doi: 10.1039/C5CY01790D
    [32] XIE Y, CHEN J J, WU X, WEN J J, ZHAO R, LI Z L, TIAN G C, ZHANG Q L, NING P, HAO J M. Frustrated lewis pairs boosting low-temperature CO2 methanation performance over Ni/CeO2 nanocatalysts[J]. ACS Catal,2022,12(17):10587−10602. doi: 10.1021/acscatal.2c02535
    [33] LI Y B, WANG Q Q, CAO M, LI S, SONG Z W, QIU L, YU F, LI R F, YAN X L. Structural evolution of robust Ni3Fe1 alloy on Al2O3 in dry reforming of methane: effect of iron-surplus strategy from Ni1Fe1 to Ni3Fe1[J]. Appl Catal B: Environ,2023,331:122669. doi: 10.1016/j.apcatb.2023.122669
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  506
  • HTML全文浏览量:  210
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-21
  • 修回日期:  2023-04-26
  • 录用日期:  2023-04-27
  • 网络出版日期:  2023-05-12
  • 刊出日期:  2023-12-05

目录

    /

    返回文章
    返回