留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面等离激元增强Ni/TiO2光催化苯乙炔选择性加氢

王靖 王瑞义 张晋 李新成 王云伟 郑占丰

王靖, 王瑞义, 张晋, 李新成, 王云伟, 郑占丰. 表面等离激元增强Ni/TiO2光催化苯乙炔选择性加氢[J]. 燃料化学学报(中英文), 2023, 51(12): 1834-1842. doi: 10.19906/j.cnki.JFCT.2023042
引用本文: 王靖, 王瑞义, 张晋, 李新成, 王云伟, 郑占丰. 表面等离激元增强Ni/TiO2光催化苯乙炔选择性加氢[J]. 燃料化学学报(中英文), 2023, 51(12): 1834-1842. doi: 10.19906/j.cnki.JFCT.2023042
WANG Jing, WANG Rui-yi, ZHANG Jin, LI Xin-cheng, WANG Yun-wei, ZHENG Zhan-feng. Plasmon-enhanced photocatalytic selective hydrogenation of phenylacetylene over Ni/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1834-1842. doi: 10.19906/j.cnki.JFCT.2023042
Citation: WANG Jing, WANG Rui-yi, ZHANG Jin, LI Xin-cheng, WANG Yun-wei, ZHENG Zhan-feng. Plasmon-enhanced photocatalytic selective hydrogenation of phenylacetylene over Ni/TiO2 catalysts[J]. Journal of Fuel Chemistry and Technology, 2023, 51(12): 1834-1842. doi: 10.19906/j.cnki.JFCT.2023042

表面等离激元增强Ni/TiO2光催化苯乙炔选择性加氢

doi: 10.19906/j.cnki.JFCT.2023042
基金项目: 国家自然科学基金(22072176)和山西省基础研究计划项目(20210302123012)资助
详细信息
    通讯作者:

    Tel: 0351-4040605, E-mail: wangruiyi@sxicc.ac.cn

    wangyunwei@sxicc.ac.cn

    zfzheng@sxicc.ac.cn

  • 中图分类号: O643

Plasmon-enhanced photocatalytic selective hydrogenation of phenylacetylene over Ni/TiO2 catalysts

Funds: The project was supported by the National Natural Science Foundation of China (22072176) and the Shanxi Science and Technology Department (20210302123012)
  • 摘要: 研究采用浸渍还原法制备了碳修饰的二氧化钛负载的Ni纳米颗粒催化剂,在苯乙炔选择性加氢反应中表现出良好的光催化性能。Ni纳米颗粒在可见光激发下产生高能“热电子”促进了反应底物的解离和活化。富电子态的Ni纳米颗粒抑制了苯乙烯在Ni/TiO2表面的吸附,提高了苯乙烯的选择性。本工作为光催化苯乙炔选择性加氢反应提供了一种绿色且高效的方法。
  • FIG. 2810.  FIG. 2810.

    FIG. 2810.  FIG. 2810.

    图  1  Ni/TiO2、Ni/Al2O3和Ni/SiO2催化剂的XRD谱图

    Figure  1  XRD patterns of Ni/TiO2, Ni/Al2O3 and Ni/SiO2 catalyst

    图  2  (a) Ni/TiO2的TEM照片, (b) Ni/TiO2的HRTEM照片和 (c) TiO2表面的碳物种

    Figure  2  (a) TEM image of Ni/TiO2, (b) HRTEM image of Ni/TiO2 and (c) carbon species on the surface of TiO2

    图  3  TiO2和Ni/TiO2催化剂的拉曼光谱谱图

    Figure  3  Raman spectra of TiO2 and Ni/TiO2 catalyst

    图  4  (a)Ni/TiO2、Ni/Al2O3和Ni/SiO2催化剂的Ni 2p XPS谱图 (b)Ni/TiO2和TiO2的Ti 2pXPS谱图

    Figure  4  (a) Ni 2p XPS spectra of Ni/TiO2, Ni/Al2O3 and Ni/SiO2 catalyst and (b) Ti 2p XPS spectra of Ni/TiO2 and TiO2

    图  5  载体及催化剂的UV-vis-DRS光谱谱图

    Figure  5  UV-vis-DRS spectra of supports and catalysts

    图  6  催化剂的N2吸附-脱附等温线(a)和催化剂的孔径分布(b)

    Figure  6  (a) N2 adsorption-desorption isotherms of catalysts and (b) pore size distribution lines ofcatalysts

    图  7  (a)暗反应和(b)光反应苯乙炔选择性加氢反应动力学曲线

    Figure  7  Kinetic curves for the selective hydrogenation of phenylacetylenein the dark (a) and under light irradiation (b)

    图  8  光强、温度、波长对Ni/TiO2催化苯乙炔选择性加氢反应的影响及催化剂的循环稳定性

    Figure  8  Effect of intensity (a), reaction temperature (b), wavelength (c), on catalytic activity of the selective hydrogenation of phenylacetylene and (d) catalytic stability of Ni/TiO2 catalyst

    图  9  苯乙炔和苯乙烯共吸附在Ni/TiO2催化剂上的原位DRIFTS谱图

    Figure  9  In-situ DRIFTS of co-adsorption of phenylacetylene and styrene on the Ni/TiO2 catalyst

    图  10  暗反应和光照条件下Ni/TiO2催化剂表面H2活化的原位漫反射傅里叶变换红外光谱谱图

    Figure  10  DRIFTS of the H2 activation process over Ni/TiO2 catalyst in the dark and under visible light irradiation

    图  11  可见光下Ni/TiO2催化苯乙炔选择性加氢的反应机理

    Figure  11  Reaction mechanism for the selective hydrogenation of phenylacetylene to styrene over Ni/TiO2catalyst under visible light irradiation

    表  1  不同样品的物理化学参数

    Table  1  Physicochemical parameters of varioussamples

    EntrySampleSBET /(m2·g−1)vPore /(cm3·g−1)dPore /nm
    1TiO282.300.3515.21
    2Ni/TiO262.350.3219.13
    3Al2O3188.890.6712.86
    4Ni/Al2O3167.150.6616.91
    5SiO2170.550.7121.05
    6Ni/SiO2144.430.7524.95
    下载: 导出CSV

    表  2  光催化苯乙炔选择性加氢活性

    Table  2  Comparison of photocatalytic selective hydrogenation of phenylacetylene

    EntryCatalystIrradiationTime /hCon. /%Sel. /%
    1a1.5% Ni/TiO2light533.297.6
    dark5
    2 a3.0% Ni/TiO2light570.798.0
    dark55.396.1
    3 a4.5% Ni/TiO2light587.697.5
    dark512.196.4
    4 a5.5% Ni/TiO2light562.298.4
    dark57.195.9
    5Ni/Al2O3light639.793.0
    dark66.995.8
    6Ni/SiO2light67.996.0
    dark63.199.9
    7 aTiO2light5
    8bno catalystlight5
    9c4.5% Ni/TiO2light5
    10dNi/TiO2light466.998.2
    11e4.5% Ni/TiO2light381.998.6
    dark348.799.9
    a: Reaction conditions: phenylacetylene (0.1 mmol), catalyst (20 mg), isopropanol (2 mL), H2 (1 atm), 60 ℃, 5 h, LED lamp (wavelength 430−720 nm, light intensity 0.5 W/cm2); b: Without catalyst; c: Ar (1 atm); d: Prepared using Ni(OH)2 as precursor; e: A mixture of phenylacetylene (0.05 mmol) and styrene (0.05 mmol) was used as reactant
    下载: 导出CSV

    表  3  Ni基催化剂在苯乙炔选择性加氢中的性能

    Table  3  Performance comparison of various Ni based catalysts for the selective hydrogenation of phenylacetylene

    CatalystSolventPhenylacetylene /mmolt /℃p /MPaCon. /%Sel. /%Ref
    Ni NSsethanol1.0500.19889[3]
    Ni/2D BPtetrahydrofuran/toluene (3∶1)0.3801.093.292.8[26]
    Ni-fructose@SiO2-800acetonitrile1.01101.088a[27]
    Ni/C-400-6ethanol10501.0>9977.3[28]
    Ni-CNFs(1)/MS2-propanol1.7800.190.8 ~ 90[29]
    H350-Ni/COFmethanol0.41001.0>9985[30]
    Ni2P/MZSM-5-2ethanol45.61001.0 ~ 99 ~ 85[31]
    Ni2P/Al2O32-propanol9.11000.398.688.2[32]
    Ni2Si/SiO2ethanol10801.079.087.7[33]
    450-NiSixethanol10500.4179.987.7[34]
    NiCo0.09/ SiO2ethanol49.0600.5>9988[2]
    NiZn3/Al2O3methanol49.0600.5>9992[35]
    Pre-NiCu/MMOtoluene5.01000.495.890.3[23]
    Ni3Sn/MgAl2O4hexane1.0400.5>9989[36]
    Ni5Mg4Ga3-7002-propanol9.1400.395.192.2[37]
    Ni/TiO22-propanol0.1600.1>9993.5this work
    下载: 导出CSV
  • [1] FAN Q, HE S, HAO L, LIU X, ZHU Y, XU S, ZHANG F. Photodeposited Pd nanoparticles with disordered structure for phenylacetylene semihydrogenation[J]. Sci Rep,2017,7:42172. doi: 10.1038/srep42172
    [2] CHEN W, BAO Z, ZHOU Z. Selective hydrogenation of phenylacetylene over non-precious bimetallic Ni-Zn/SiO2 and Ni-Co/SiO2 catalysts prepared by glucose pyrolysis[J]. React Kinet, Mech Catal,2022,135:2533−2550. doi: 10.1007/s11144-022-02276-w
    [3] YU J W, WANG X Y, YUAN C Y, LI W Z, WANG Y H, ZHANG Y W. Synthesis of ultrathin Ni nanosheets for semihydrogenation of phenylacetylene to styrene under mild conditions[J]. Nanoscale,2018,10(15):6936−6944. doi: 10.1039/C8NR00532J
    [4] ZHANG L, ZHOU M, WANG A, ZHANG T. Selective hydrogenation over supported metal catalysts: From nanoparticles to single atoms[J]. Chem Rev,2020,120(2):683−733. doi: 10.1021/acs.chemrev.9b00230
    [5] LI Z, HU M, LIU B, LIU J, WANG P, YAO J, ZHANG X, HE M, SONG W. Pd-Zn alloy nanoparticles encapsulated into mesoporous silica with confinement effect for highly selective semi-hydrogenation of phenylacetylene[J]. ChemCatChem,2020,13(3):868−873.
    [6] YANG F, DING S, SONG H, YAN N. Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenylacetylene[J]. Sci China Mater,2020,63(6):982−992. doi: 10.1007/s40843-020-1271-x
    [7] HU M, JIN L, DANG Y, SUIB S L, HE J, LIU B. Supported Pt nanoparticles on mesoporous titania for selective hydrogenation of phenylacetylene[J]. Front Chem,2020,8:581512. doi: 10.3389/fchem.2020.581512
    [8] SUN D, BI Q Y, DENG M X, JIA B Q, HUANG F Q. Atomically dispersed Pd-Ru dual sites in an amorphous matrix towards efficient phenylacetylene semi-hydrogenation[J]. Chem Commun,2021,57(46):5670−5673. doi: 10.1039/D1CC00923K
    [9] LEITMANNOVA E, SVOBODA J, SEDLACEK J, VOHLIDAL J, KACER P, CERVENY L. Hydrogenation of phenylacetylene and 3-phenylpropyne using Rh(diene) complexes under homogeneous and heterogeneous conditions[J]. Appl Catal A: Gen,2010,372:34−39.
    [10] EROKHIN A V, LOKTEVA E S, YERMAKOV A Y, BOUKHVALOV D W, MASLAKOV K I, GOOLUBINA E V, UIMIN M A. Phenylacetylene hydrogenation on Fe@C and Ni@C core-shell nanoparticles: About intrinsic activity of graphene-like carbon layer in H2 activation[J]. Carbon,2014,74:291−301. doi: 10.1016/j.carbon.2014.03.034
    [11] HUANG Y, YAN H T, ZHANG C Y, WANG Y, WEI Q H, ZHANG R K. Interfacial electronic effects in Co@N-doped carbon shells heterojunction catalyst for semihydrogenation of phenylacetylene[J]. Nanomaterials,2021,11(11):2776. doi: 10.3390/nano11112776
    [12] SUN Y, LUO B, XU S, GUO W, HUANG X, SHAO L. Atomic Cu on nanodiamond-based sp2/sp3 hybrid nanostructures for selective hydrogenation of phenylacetylene[J]. Chem Phys Lett,2019,723:39−43. doi: 10.1016/j.cplett.2019.03.015
    [13] PANG M, SHAO Z, WANG X, LIANG C, XIA W. Toward economical purification of styrene monomers: Eggshell Mo2C for front-end hydrogenation of phenylacetylene[J]. AIChE J,2015,61(8):2522−2531. doi: 10.1002/aic.14822
    [14] LV S, DU Y, WU F, CAI Y, ZHOU T. Review on LSPR assisted photocatalysis: Effects of physical fields and opportunities in multifield decoupling[J]. Nanoscale Adv,2022,4(12):2608−2631. doi: 10.1039/D2NA00140C
    [15] BUENO-ALEJO C J, ARCA-RAMOS A, HUESO J L, SANTAMARIA J. LED-driven continuous flow carbon dioxide hydrogenation on a nickel-based catalyst[J]. Catal Today,2020,355:678−684.
    [16] WANG J, WANG M, LI X, GU X, KONG X, WANG R, KE X, YU G, ZHENG Z. Bidentate ligand modification strategy on supported Ni nanoparticles for photocatalytic selective hydrogenation of alkynes[J]. Appl Catal B: Environ,2022,313:121449. doi: 10.1016/j.apcatb.2022.121449
    [17] JIA T, MENG D, JI H, SHENG X, CHEN C, SONG W, ZHAO J. Visible-light-driven semihydrogenation of alkynes via proton reduction over carbon nitride supported nickel[J]. Appl Catal B: Environ,2022,304:121004. doi: 10.1016/j.apcatb.2021.121004
    [18] GONG J, LIU J, CHEN X, JIANG Z, WEN X, MIJOWSKA E, TANG T. One-pot synthesis of core/shell Co@C spheres by catalytic carbonization of mixed plastics and their application in the photo-degradation of Congo red[J]. J Mater Chem A,2014,2(20):7461−7470. doi: 10.1039/C4TA00173G
    [19] XU S, TANG J, ZHOU Q, DU J, LI H. Interfacing anatase with carbon layers for photocatalytic nitroarene hydrogenation[J]. ACS Sustainable Chem Eng,2019,7(19):16190−16199. doi: 10.1021/acssuschemeng.9b03149
    [20] XIN J, CUI H, CHENG Z, ZHOU Z. Bimetallic Ni-Co/SBA-15 catalysts prepared by urea co-precipitation for dry reforming of methane[J]. Appl Catal A: Gen,2018,554:95−104. doi: 10.1016/j.apcata.2018.01.033
    [21] LUCCHINI M A, TESTINO A, LUDWIG C, KAMBOLIS A, EI-KAZZI M, CERVELLINO A, RIANI P, CANEPA F. Continuous synthesis of nickel nanopowders: Characterization, process optimization, and catalytic properties[J]. Appl Catal B: Environ,2014,156−157:404−415. doi: 10.1016/j.apcatb.2014.03.045
    [22] LIU S, KIM K H, YUN J M, KUNDU A, SANKAR K V, PATIL U M, RAY C, JUN S C. 3D yolk-shell NiGa2S4 microspheres confined with nanosheets for high performance supercapacitors[J]. J Mater Chem A,2017,5(13):6292−6298.
    [23] LIU Y, ZHAO J, FENG J, HE Y, DU Y, LI D. Layered double hydroxide-derived Ni-Cu nanoalloy catalysts for semihydrogenation of alkynes: Improvement of selectivity and anti-coking ability via alloying of Ni and Cu[J]. J Catal,2018,359:251−260. doi: 10.1016/j.jcat.2018.01.009
    [24] 宋娟娟, 朱宝林, 胡晓静, 石玉坤, 黄唯平. 碳修饰二氧化钛纳米管的光催化性能研究[C]//国家自然科学基金委员会, 中国化学会. 第六届全国物理无机化学会议论文摘要集, 2012: 1.

    SONG Juan-juan, ZHU Bao-lin, HU Xiao-jing, SHI Yu-kun, HUANG Wei-ping. Photocatalytic properties of carbon-modified titanium dioxide nanotubes[C]//National Natural Science Foundation of China, Chinese Chemical Society. Abstracts of the 6th National Conference on Physical Inorganic Chemistry, 2012: 1.
    [25] TORRES C C, ALDERETE J B, MELLA C, PAWELEC B. Maleic anhydride hydrogenation to succinic anhydride over mesoporous Ni/TiO2 catalysts: Effects of Ni loading and temperature[J]. J Mol Catal A: Chem,2016,423:441−448. doi: 10.1016/j.molcata.2016.07.037
    [26] CAPORALI M, SERRANO-RUIZ M, TELESIO F, HEUN S, NICOTRA G, SPINELLA C, PERUZZINI M. Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis[J]. Chem Commun,2017,53(79):10946−10949. doi: 10.1039/C7CC05906J
    [27] MURUGESAN K, ALSHAMMARI A S, SOHAIL M, BELLER M, JAGADEESH R V. Monodisperse nickel-nanoparticles for stereo- and chemoselective hydrogenation of alkynes to alkenes[J]. J Catal,2019,370:372−377. doi: 10.1016/j.jcat.2018.12.018
    [28] GUO X, CHEN X, SU D, LIANG C. Preparation of Ni/C core-shell nanoparticles through MOF pyrolysis for phenylacetylene hydrogenation reaction[J]. Acta Chim Sin,2018,76(1):22−29. doi: 10.6023/A17070339
    [29] DONPHAI W, KAMEGAWA T, CHAREONPANICH M, YAMASHITA H. Reactivity of Ni-carbon nanofibers/mesocellular silica composite catalyst for phenylacetylene hydrogenation[J]. Ind Eng Chem Res,2014,53(24):10105−10111.
    [30] WANG N, LIU J, ZHANG M, WANG C, LI X, MA L. Non-noble nickel-modified covalent organic framework for partial hydrogenation of aromatic terminal alkynes[J]. ACS Appl Mater Interfaces,2021,13(50):60135−60143. doi: 10.1021/acsami.1c22069
    [31] FU W, ZHANG L, TAO T, TANG T. Highly dispersed Ni2P clusters inlaid in micropore openings on mesoporous ZSM-5 zeolite and its catalytic performance in the phenylacetylene semi-hydrogenation[J]. J Ind Eng Chem,2021,95:376−387.
    [32] CHEN Y, LI C, ZHOU J, ZHANG S, RAO D, HE S, WEI M, EVANS D G, DUAN X. Metal phosphides derived from hydrotalcite precursors toward the selective hydrogenation of phenylacetylene[J]. ACS Catal,2015,5(10):5756−5765. doi: 10.1021/acscatal.5b01429
    [33] YANG K, CHEN X, GUAN J, LIANG C. Nickel silicides prepared from organometallic polymer as efficient catalyst towards hydrogenation of phenylacetylene[J]. Catal Today,2015,246:176−183. doi: 10.1016/j.cattod.2014.09.027
    [34] CHEN X, ZHAO A, SHAO Z, MA Z, LIANG C. A novel approach to synthesize highly selective nickel silicide catalysts for phenylacetylene semihydrogenation[C]// Scientific Bases for the Preparation of Heterogeneous Catalysts-Proceedings of the 10th International Symposium. Louvain-la-Neuve, Belgium, 2010: 77−84.
    [35] BAO Z, YANG L, CHENG Z, ZHOU Z. Selective hydrogenation of the C8 aromatic fraction of pyrolysis gasoline over NiZn3/α-Al2O3: Experimental and modeling studies[J]. Ind Eng Chem Res,2020,59(10):4322−4332. doi: 10.1021/acs.iecr.9b06476
    [36] LIU Y, LIU X, FENG Q, HE D, ZHANG L, LIAN C, SHEN R, ZHAO G, JI Y, WANG D, ZHOU G, LI Y. Intermetallic Nix My (M = Ga and Sn) nanocrystals: A non-precious metal catalyst for semi-hydrogenation of alkynes[J]. Adv Mater,2016,28(23):4747−4754. doi: 10.1002/adma.201600603
    [37] LI C, CHEN Y, ZHANG S, ZHOU J, WANG F, HE S, WEI M, EVANS D G, DUAN S. Nickel-gallium intermetallic nanocrystal catalysts in the semihydrogenation of phenylacetylene[J]. ChemCatChem,2014,6(3):824−831. doi: 10.1002/cctc.201300813
    [38] ZHU P, GAO M, ZHANG J, WU Z, WANG R, WANG Y, WACLAWIK E R, ZHENG Z. Synergistic interaction between Ru and MgAl-LDH support for efficient hydrogen transfer reduction of carbonyl compounds under visible light[J]. Appl Catal B: Environ,2021,283:119640. doi: 10.1016/j.apcatb.2020.119640
    [39] WANG R, LIU H, WANG X, LI X, GU X, ZHENG Z. Plasmon-enhanced furfural hydrogenation catalyzed by stable carbon-coated copper nanoparticles driven from metal–organic frameworks[J]. Catal Sci Technol,2020,10(19):6483−6494.
    [40] WANG J, GU X, PEI L, KONG P, ZHANG J, WANG X, WANG R, WACLAWIK E R, ZHENG Z. Strong metal-support interaction induced O2 activation over Au/MNb2O6 (M = Zn2 + , Ni2 + and Co2 + ) for efficient photocatalytic benzyl alcohol oxidative esterification[J]. Appl Catal B: Environ,2021,283:119618. doi: 10.1016/j.apcatb.2020.119618
    [41] LIU W, OTERO AREAN C, BORDIGA S, GROPPO E, ZECCHINA A. Selective phenylacetylene hydrogenation on a polymer-supported palladium catalyst monitored by FTIR spectroscopy[J]. ChemCatChem,2011,3(1):222−226. doi: 10.1002/cctc.201000244
    [42] HE P, CHEN B, HUANG L, LIU X, QIN J, ZHANG Z, DAI W. Heterogeneous manganese-oxide-catalyzed successive cleavage and functionalization of alcohols to access amides and nitriles[J]. Chem,2022,8(7):1906−1927. doi: 10.1016/j.chempr.2022.02.021
    [43] SOLIS-GARCIA A, LOUVIER-HERNANDEZ J F, ALMENDAREZ-CAMARILLO A, FIERRO-GONZALEZ J C. Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni[J]. Appl Catal B: Environ,2017,218:611−620. doi: 10.1016/j.apcatb.2017.06.063
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  651
  • HTML全文浏览量:  344
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-16
  • 修回日期:  2023-03-27
  • 录用日期:  2023-03-28
  • 网络出版日期:  2023-05-17
  • 刊出日期:  2023-12-05

目录

    /

    返回文章
    返回