On the characteristics of the slow and fast co-pyrolysis of cellulose and oxalic acid
-
摘要: 本研究利用热重-傅里叶变换红外光谱和卧式固定床热解反应装置,探究了纤维素与草酸的慢速和快速共热解反应特性。慢速共热解的失重曲线包括草酸分解和纤维素分解两个阶段,由于草酸与纤维素分解不同步,草酸主要通过其分解形成的挥发分影响纤维素的分解,且影响并不明显。而在快速共热解中,草酸与纤维素同步热解,原料及挥发分之间有着充分的交互反应,因此,草酸对纤维素的三相热解产物具有显著影响。相比于纤维素单独快速热解,快速共热解形成的生物油中左旋葡聚糖、左旋葡萄糖酮含量减少,1,4∶3,6-二脱水-α-d-吡喃葡萄糖含量显著提高;热解气中CO减少,CO2增多;此外,纤维素分解更为彻底,热解炭具有更高的芳香化程度。Abstract: The slow and fast co-pyrolysis characteristics of cellulose and oxalic acid were investigated by thermogravimetric-Fourier transform infrared spectroscopy and horizontal fixed-bed pyrolysis setup. The weight loss curve of slow co-pyrolysis showed oxalic acid decomposition and cellulose decomposition stages. As the decomposition of oxalic acid and cellulose was not synchronous, oxalic acid affected the decomposition of cellulose mainly through the volatiles formed by its decomposition, which was not obvious. Differently, in fast co-pyrolysis, oxalic acid and cellulose were simultaneously pyrolyzed, and sufficient interaction could occur between raw materials and volatile components. Therefore, oxalic acid had a significant impact on the pyrolysis products of cellulose. Compared with the fast pyrolysis of cellulose, the contents of levoglucosan and levoglucosenone decreased, while the content of 1,4∶3,6-dianhydro-α-d-glucopyranose increased significantly in the bio-oil during fast co-pyrolysis process. The volume fraction of CO in pyrolysis gas decreased, whereas that of CO2 increased. In addition, the decomposition of cellulose was more thorough, and more aromatic structures were formed in biochar.
-
Key words:
- oxalic acid /
- cellulose /
- slow co-pyrolysis /
- fast co-pyrolysis
-
表 1 不同温度下典型液体产物选择性
Table 1 Selectivity of typical liquid products at different temperatures
Product From Selectivity/% 300 ℃ 400 ℃ 500 ℃ 600 ℃ 700 ℃ 800 ℃ FF Co-pyrolysis 7.27 5.88 5.45 3.61 1.37 1.22 pyrolysis of cellulose 18.76 12.86 10.82 8.70 5.95 3.94 LGO Co-pyrolysis 9.85 0.00 0.00 0.00 0.00 0.00 pyrolysis of cellulose 12.69 2.73 0.47 0.00 0.00 0.00 DGP Co-pyrolysis 31.74 21.20 16.89 10.00 4.08 2.64 pyrolysis of cellulose 13.61 7.30 4.87 3.07 1.93 0.89 LG Co-pyrolysis 7.31 17.34 17.90 26.02 14.46 13.62 pyrolysis of cellulose 6.07 21.12 28.12 39.21 42.08 46.05 表 2 不同温度下典型液体产物产率
Table 2 Yields of typical liquid products at different temperatures
Product From Yield/% 300 ℃ 400 ℃ 500 ℃ 600 ℃ 700 ℃ 800 ℃ FF Co-pyrolysis 1.44 2.12 2.00 1.84 0.46 0.37 pyrolysis of cellulose 1.80 2.14 1.73 1.47 1.01 0.40 LGO Co-pyrolysis 1.85 0.00 0.00 0.00 0.00 0.00 pyrolysis of cellulose 1.53 0.57 0.09 0.00 0.00 0.00 DGP Co-pyrolysis 5.89 5.31 4.76 3.85 0.77 0.44 pyrolysis of cellulose 1.61 1.50 0.96 0.64 0.40 0.11 LG Co-pyrolysis 1.21 3.98 4.64 8.99 2.14 2.04 pyrolysis of cellulose 0.64 3.88 4.96 7.30 7.85 5.14 -
[1] LU Q, ZHOU M X, LI W T, WANG X, CUI M S, YANG Y P. Catalytic fast pyrolysis of biomass with noble metal-like catalysts to produce high-grade bio-oil: Analytical Py-GC/MS study[J]. Catal Today,2018,302:169−179. doi: 10.1016/j.cattod.2017.08.029 [2] 王欣坤, 张洁涵, 陈兆辉, 樊惠玲, 余剑, 高士秋. 碳中和背景下生活垃圾生物质炭的利用——低NOx解耦燃烧 [J]. 燃料化学学报(中英文), 2023, 51(8): 1165−1172.WANG Xin-kun, ZHANG Jie-han, CHEN Zhao-hui, FAN Hui-ling, YU Jian, GAO Shi-qiu. Utilization of domestic waste biomass char in the context of carbonneutrality—low NOx decoupled combustion [J]. J Fuel Chem Technol, 2023, 51(8): 1165−1172. [3] 赵小燕, 汤文, 曹景沛, 仁杰. 炭载金属催化剂在生物质焦油重整中的研究进展[J]. 燃料化学学报,2022,50(12):1547−1563. doi: 10.19906/j.cnki.jfct.2022062ZHAO Xiao-yan, TANG Wen, CAO Jing-pei, REN Jie. Recent progress of tar reforming over char supported metal catalyst[J]. J Fuel Chem Technol,2022,50(12):1547−1563. doi: 10.19906/j.cnki.jfct.2022062 [4] ZHENG A Q, XIA S P, CAO F Z, LIU S J, YANG X W, ZHAO Z L, TIAN Y Y, LI H B. Directional valorization of eucalyptus waste into value-added chemicals by a novel two-staged controllable pyrolysis process[J]. Chem Eng J,2021,404:127045. doi: 10.1016/j.cej.2020.127045 [5] SU Y, ZHANG S, LIU L, XIONG Y. Synergetic production of phenols and syngas from the catalytic pyrolysis of cellulose on activated carbon[J]. CIESC J,2021,72(10):5206−5217. [6] 朱亮, 黄明, 丁紫霞, 马中青. 烘焙脱氧毛竹与高密度聚乙烯共催化热解制备轻质芳烃[J]. 燃料化学学报,2022,50(8):993−1003. doi: 10.19906/j.cnki.JFCT.2022014ZHU Liang, HUANG Ming, DING Zi-xia, MA Zhong-qing. Production of light bio-aromatics from co-catalytic fast pyrolysis of torrefied bamboo and high-density polyethylene[J]. J Fuel Chem Technol,2022,50(8):993−1003. doi: 10.19906/j.cnki.JFCT.2022014 [7] LIU Q, ZHONG Z P, WANG S R, LUO Z Y. Interactions of biomass components during pyrolysis: A TG-FTIR study[J]. J Anal Appl Pyrolysis,2011,90(2):213−218. doi: 10.1016/j.jaap.2010.12.009 [8] KAN T, STREZOV V, EVANS T J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters[J]. Renewable Sustainable Energy Rev,2016,57:1126−1140. doi: 10.1016/j.rser.2015.12.185 [9] SHARMA A, PAREEK V, ZHANG D. Biomass pyrolysis—A review of modelling, process parameters and catalytic studies[J]. Renewable Sustainable Energy Rev,2015,50:1081−1096. doi: 10.1016/j.rser.2015.04.193 [10] NISHU, LIU R, RAHMAN M M, SARKER M, CHAI M, LI C, CAI J. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure[J]. Fuel Process Technol,2020,199:106301. doi: 10.1016/j.fuproc.2019.106301 [11] LU Q, HU B, ZHANG Z X, WU Y T, CUI M S, LIU D J, DONG C Q, YANG Y P. Mechanism of cellulose fast pyrolysis: The role of characteristic chain ends and dehydrated units[J]. Combust Flame,2018,198:267−277. doi: 10.1016/j.combustflame.2018.09.025 [12] WANG S, GUO X, LIANG T, ZHOU Y, LUO Z Y. Mechanism research on cellulose pyrolysis by Py-GC/MS and subsequent density functional theory studies[J]. Bioresour Technol,2012,104:722−728. doi: 10.1016/j.biortech.2011.10.078 [13] LI C, ZHANG J, GU J, YUAN H R, CHEN Y. Insight into the role of varied acid-base sites on fast pyrolysis kinetics and mechanism of cellulose[J]. Waste Manage,2021,135:140−149. doi: 10.1016/j.wasman.2021.08.040 [14] KWON G J, KIM D Y, KIMURA S, KUGA S. Rapid-cooling, continuous-feed pyrolyzer for biomass processing: Preparation of levoglucosan from cellulose and starch[J]. J Anal Appl Pyrolysis,2007,80(1):1−5. doi: 10.1016/j.jaap.2006.12.012 [15] LI K, WANG B, BOLATIBIEKE D N, NAN D H, ZHANG Z X, CUI M S, LU Q. Catalytic fast pyrolysis of biomass with Ni-P-MCM-41 to selectively produce levoglucosenone[J]. J Anal Appl Pyrolysis,2020,148:104824. doi: 10.1016/j.jaap.2020.104824 [16] LI Y, LI K, HU B, ZHANG Z X, ZHANG G, FENG S Y, WANG T P, LU Q. Catalytic fast pyrolysis of cellulose for selective production of 1-hydroxy-3, 6-dioxabicyclo[3.2. 1]octan-2-one using nickel-tin layered double oxides[J]. Ind Crop Prod,2021,162:113269. doi: 10.1016/j.indcrop.2021.113269 [17] BAI X, LI J, JIA C, SHAO J A, YANG Q, CHEN Y Q, YANG H P, WANG X H, CHEN H P. Preparation of furfural by catalytic pyrolysis of cellulose based on nano Na/Fe-solid acid[J]. Fuel,2019,258:116089. doi: 10.1016/j.fuel.2019.116089 [18] RODRÍGUEZ-MACHÍN L, ARTEAGA-PÉREZ L E, PÉREZ-BERMÚDEZ R A, CASAS-LEDÓN Y, PRINS W, RONSSE F. Effect of citric acid leaching on the demineralization and thermal degradation behavior of sugarcane trash and bagasse[J]. Biomass Bioenergy,2018,108:371−380. doi: 10.1016/j.biombioe.2017.11.001 [19] OUDENHOVEN S R G, WESTERHOF R J M, KERSTEN S R A. Fast pyrolysis of organic acid leached wood, straw, hay and bagasse: Improved oil and sugar yields[J]. J Anal Appl Pyrolysis,2015,116:253−262. doi: 10.1016/j.jaap.2015.09.003 [20] ZHANG F, XU L J, XU F X, JIANG L Q. Different acid pretreatments at room temperature boost selective saccharification of lignocellulose via fast pyrolysis[J]. Cellulose,2021,28(1):81−90. doi: 10.1007/s10570-020-03544-5 [21] RODRÍGUEZ-MACHÍN L, ARTEAGA-PÉREZ L E, VERCRUYSSE J, PÉREZ-BERMÚDEZ R A, PRINS W, RONSSE F. Py-GC/MS based analysis of the influence of citric acid leaching of sugarcane residues as a pretreatment to fast pyrolysis[J]. J Anal Appl Pyrolysis,2018,134:465−475. doi: 10.1016/j.jaap.2018.07.013 [22] RODRÍGUEZ-MACHÍN L, ARTEAGA-PÉREZ L E, PALA M, HERREGODS-VAN D P K, PÉREZ-BERMÚDEZ R A, FEYS J, PRINS W, RONSSE F. Influence of citric acid leaching on the yield and quality of pyrolytic bio-oils from sugarcane residues. J Anal Appl Pyrolysis, 2019, 137: 43−53. [23] MENG X, ZHANG H, LIU C, XIAO R. Comparison of acids and sulfates for producing levoglucosan and levoglucosenone by selective catalytic fast pyrolysis of cellulose using Py-GC/MS[J]. Energy Fuels,2016,30(10):8369−8376. doi: 10.1021/acs.energyfuels.6b01436 [24] ZHANG Z M, ZHANG C T, ZHANG L J, LI C, ZHANG S, LIU Q, WANG Y, GHOLIZADEH M, HU X. Pyrolysis of cellulose with co-feeding of formic or acetic acid[J]. Cellulose,2020,27(9):4909−4929. doi: 10.1007/s10570-020-03118-5 [25] HU B, CHENG A S, LI Y, HUANG Y B, LIU J, ZHANG B, LI K, ZHAO L, WANG T P, LU Q. A sustainable strategy for the production of 1, 4: 3, 6-dianhydro-α-d-glucopyranose through oxalic acid-assisted fast pyrolysis of cellulose[J]. Chem Eng J,2022,436:135200. doi: 10.1016/j.cej.2022.135200 [26] HU B, CHENG A S, XIE W L, LIU J, HUANG Y B, ZHU L J, ZHANG B, LI M X, ZHAO L, WANG T P, LU Q. The oxalic acid-assisted fast pyrolysis of biomass for the sustainable production of furfural[J]. Fuel,2022,322:124279. doi: 10.1016/j.fuel.2022.124279 [27] LU Q, ZHANG G, ZHANG Z X, HU B, LI K. Enhanced production of 4-ethyl phenol from activated carbon catalyzed fast pyrolysis of bagasse with 9, 10-dihydroanthracene as a hydrogen donor[J]. J Anal Appl Pyrolysis,2020,150:104880. doi: 10.1016/j.jaap.2020.104880 [28] LU Q, XIE W L, HU B, LIU J, ZHAO W, ZHANG B, WANG T P. A novel interaction mechanism in lignin pyrolysis: Phenolics-assisted hydrogen transfer for the decomposition of the β-O-4 linkage[J]. Combust Flame,2021,225:395−405. doi: 10.1016/j.combustflame.2020.11.011 [29] OHNISHI A, KATö K, HORI T, NAKAYAMA M. Crystal structure and 1H- and 13C-N. M. R. studies of 1, 4: 3, 6-dianhydro-α-d-glucopyranose obtained from pyrolysis of cellulose[J]. Carbohydr Res,1981,96(2):161−166. doi: 10.1016/S0008-6215(00)81867-4 [30] CHEN Y Q, YANG H P, WANG X H, ZHANG S H, CHEN H P. Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: Influence of temperature[J]. Bioresour Technol,2012,107:411−418. doi: 10.1016/j.biortech.2011.10.074 [31] LIU Z, NIU W, CHU H, ZHOU T, NIU Z. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues[J]. BioResources,2018,13(2):3429−3446. [32] TEKIN K, KARAGÖZ S, BEKTAŞ S. A review of hydrothermal biomass processing[J]. Renewable Sustainable Energy Rev,2014,40:673−687. doi: 10.1016/j.rser.2014.07.216 [33] STYLIANOU M, CHRISTOU A, DALIAS P, POLYCARPOU P, MICHAEL C, AGAPIOU A, PAPANASTASIOU P, FATTA-KASSINOS D. Physicochemical and structural characterization of biochar derived from the pyrolysis of biosolids, cattle manure and spent coffee grounds[J]. J Energy Inst,2020,93(5):2063−2073. doi: 10.1016/j.joei.2020.05.002 -