[1] |
LIU F F, JIN S, XIA Q X, et al. Research progress on construction and energy storage performance of MXene heterostructures[J]. J Energy Chem,2021,62:220−242. doi: 10.1016/j.jechem.2021.03.017
|
[2] |
申雪然, 冯彩虹, 代政, 等. 电解海水制氢的研究进展[J]. 化工新型材料,2021,49(12):55−60.SHEN Xueran, FENG Caihong, DAI Zheng, et al. Progress on hydrogen generation by splitting seawater[J]. New Chem Mater,2021,49(12):55−60.
|
[3] |
XIONG S, TANG R D, GONG D X, et al. Environmentally-friendly carbon nanomaterials for photocatalytic hydrogen production[J]. Chin J Catal, 2022, 43(7): 1719–1748.
|
[4] |
YUE X Z, Yi S S, WANG R W, et al. Synergistic effect based NixCo1-x architected Zn0.75Cd0.25S nanocrystals: An ultrahigh and stable photocatalysts for hydrogen evolution from water splitting[J]. Appl Catal B: Environ,2018,224:17−26. doi: 10.1016/j.apcatb.2017.10.010
|
[5] |
万晶晶, 张军, 王友转, 等. 海水制氢技术发展现状与展望[J]. 世界科技研究与发展,2022,44(2):172−184.(WAN Jingjing, ZHANG Jun, WANG Youzhuan, et al. Development status and prospect of hydrogen generation from seawater[J]. World Sci-Tech R & D,2022,44(2):172−184.
|
[6] |
WAKERLEY D W, KUEHNEL M F, ORCHARD K L, et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst[J]. Nat Energy,2017,2(4):17021. doi: 10.1038/nenergy.2017.21
|
[7] |
JI G Z, XU X Y, YANG H, et al. Enhanced hydrogen production from sawdust decomposition using hybrid-functional Ni-CaO-Ca2SiO4 Materials[J]. Environ Sci Technol,2017,51(19):11484−11492. doi: 10.1021/acs.est.7b03481
|
[8] |
QI S Y, WANG D P, ZHAO Y D, et al. Core-shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with high photocatalytic activity for the degradation of organic dyes[J]. J Mater Sci: Mater Electron,2019,30(5):5284−5296. doi: 10.1007/s10854-019-00828-w
|
[9] |
SUN R R, SONG J G, ZHAO H T, et al. Control on the homogeneity and crystallinity of Zn0.5Cd0.5S nanocomposite by different reaction conditions with high photocatalytic activity for hydrogen production from water[J]. Mater Charact,2018,144:57−65. doi: 10.1016/j.matchar.2018.06.033
|
[10] |
CHAN C C, CHANG C C, HSU C H, et al. Efficient and stable photocatalytic hydrogen production from water splitting over ZnxCd1-xS solid solutions under visible light irradiation[J]. Int J Hydrogen Energy,2014,39(4):1630−1639. doi: 10.1016/j.ijhydene.2013.11.059
|
[11] |
MA L J, XU J, ZHAO S, et al. Construction of CoS2/Zn0.5Cd0.5S S-Scheme heterojunction for enhancing H2 evolution activity under visible light[J]. Chem Eur J,2021,27(63):15795−15805. doi: 10.1002/chem.202102811
|
[12] |
MAURIN G, SERRE C, COOPER A, et al. The new age of MOFs and of their porous-related solids[J]. Chem Soc Rev,2017,46(11):3104−3107. doi: 10.1039/C7CS90049J
|
[13] |
AL OBEIDLI A, BEN SALAH H, AL MURISI M, et al. Recent advancements in MOFs synthesis and their green applications[J]. Int J Hydrogen Energy,2022,47(4):2561−2593. doi: 10.1016/j.ijhydene.2021.10.180
|
[14] |
WU T K, SHI Y Z, WANG Z W, et al. Unsaturated Ni-II centers mediated the coordination activation of benzylamine for enhancing photocatalytic activity over ultrathin Ni-MOF-74 nanosheets[J]. ACS Appl Mater Interfaces,2021,13(51):61286−61295. doi: 10.1021/acsami.1c20128
|
[15] |
NIU L, ZHANG W G, LI H T, et al. The construction of double type II heterostructure from CdS and Ni-MOF-74 with two structures and enhanced mechanism of photocatalytic water splitting[J]. J Mater Sci,2022,57(10):5768−5787. doi: 10.1007/s10853-022-07014-0
|
[16] |
张腾, 蒋灶, 杨政鑫, 等. ZnxCd1-xS光催化降解垃圾渗滤液及其产氢性能研究[J]. 燃料化学学报,2022,50(10):1299−1306.ZHANG Teng, JIANG Zao, YANG Zhengxin, et al. ZnxCd1-xS for photocatalytic degradation of landfill leachate and its hydrogen production activity[J]. J Fuel Chem Technol,2022,50(10):1299−1306.
|
[17] |
HU M, SHU J H, XU L J, et al. A novel nonmetal intercalated high crystalline g-C3N4 photocatalyst for efficiency enhanced H2 evolution[J]. Int J Hydrogen Energy,2022,47(23):11841−11852. doi: 10.1016/j.ijhydene.2022.01.227
|
[18] |
LI H Y, HAO X Q, LIU Y, et al. ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution[J]. J Colloid Interface Sci,2020,572:62−73. doi: 10.1016/j.jcis.2020.03.052
|
[19] |
郭沛然, 胡石林. Ni-MOF-74制备及其对CO的吸附性能[J]. 原子能科学技术,2020,54(4):8−590.GUO Peiran, HU Shilin. Preparation of Ni-MOF-74 and Its Adsorption Property for CO[J]. At Energy Sci Technol,2020,54(4):8−590.
|
[20] |
SHEN C C, LIU Y N, ZHOU X, et al. Large improvement of visible-light photocatalytic H2 evolution based on cocatalyst-free Zn0.5Cd0.5S synthesized through a two-step process[J]. Catal Sci Technol,2017,7(4):961−967. doi: 10.1039/C6CY02382G
|
[21] |
CHEN J M, CHEN J Y, LI Y W. Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation[J]. J Mater Chem A,2017,5(46):24116−24125. doi: 10.1039/C7TA07587A
|
[22] |
TANG Y X, ZHANG D F, PU X P, et al. Snowflake-like Cu2S/Zn0.5Cd0.5S p-n heterojunction photocatalyst for enhanced visible light photocatalytic H2 evolution activity[J]. J Taiwan Inst Chem Eng,2019,96:487−495. doi: 10.1016/j.jtice.2018.12.021
|
[23] |
YE H F, SHI R, YANG X, et al. P-doped ZnxCd1-xS solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural[J]. Appl Catal B: Environ,2018,233:70−79. doi: 10.1016/j.apcatb.2018.03.060
|
[24] |
LI T, JIN Z L. Unique ternary Ni-MOF-74/Ni2P/MoSx composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers[J]. J Colloid Interface Sci,2022,605:385−397. doi: 10.1016/j.jcis.2021.07.098
|
[25] |
WANG K, LI S L, LI Y J, et al. CoAl LDH in-situ derived CoAlP coupling with Ni2P form S-scheme heterojunction for efficient hydrogen evolution[J]. Int J Hydrogen Energy,2022,47(56):23618−23631. doi: 10.1016/j.ijhydene.2022.05.200
|
[26] |
WANG H, YUAN, X Z, et al. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal[J]. Appl Catal B: Environ,2015,174:445−454.
|
[27] |
GUO Y, LI J, YANG X X, et al. Zn0.5Cd0.5S/MIL-125-NH2(Ti) nanocomposites: Highly efficient and stable photocatalyst for hydrogen production under visible light[J]. Inorg Chem Commun,2020,112:107714. doi: 10.1016/j.inoche.2019.107714
|
[28] |
HUANG D L, LI J, ZENG G M, et al. Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: Degradation pathways and mechanism[J]. Chem Eng J,2019,375:121991. doi: 10.1016/j.cej.2019.121991
|
[29] |
CAO R Y, YANG H C, ZHANG S W, et al. Engineering of Z-scheme 2D/3D architectures with Ni(OH)2 on 3D porous g-C3N4 for efficiently photocatalytic H2 evolution[J]. Appl Catal B: Environ,2019,258:117997. doi: 10.1016/j.apcatb.2019.117997
|
[30] |
JIANG Z, XIAO C, YIN X Y, et al. Facile preparation of a novel Bi24O31Br10/nano-ZnO composite photocatalyst with enhanced visible light photocatalytic ability[J]. Ceram Int,2020,46(8):10771−10778. doi: 10.1016/j.ceramint.2020.01.087
|
[31] |
DEMIRCIVI P, GULEN B, SIMSEK E B, et al. Enhanced photocatalytic degradation of tetracycline using hydrothermally synthesized carbon fiber decorated BaTiO3[J]. Mater Chem Phys,2020,241:122236. doi: 10.1016/j.matchemphys.2019.122236
|
[32] |
LI Y B, JIN Z L, ZHANG L J, et al. Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production[J]. Chin J Catal,2019,40(3):390−402. doi: 10.1016/S1872-2067(18)63173-0
|
[33] |
CHEN F, YANG Q, YAO F B, et al. Visible-light photocatalytic degradation of multiple antibiotics by AgI nanoparticle-sensitized Bi5O7I microspheres: Enhanced interfacial charge transfer based on Z-scheme heterojunctions[J]. J Catal,2017,352:160−170. doi: 10.1016/j.jcat.2017.04.032
|
[34] |
蒋灶, 吴廷增, 徐龙君, 等. ZnxCd1-xS的共沉淀法制备及其光催化活性研究[J]. 太阳能学报,2022,43(5):105−112.JIANG Zao, WU Tingzeng, XU Longjun, et al. ZnxCd1-xS prepared by coprecipitation method and its photocatalytic activity[J]. Acta Energ Sol Sin,2022,43(5):105−112.
|
[35] |
李艳, 李卓, 刘恩周. NiMoO4/ZnIn2S4 S-scheme异质结的制备及光催化产氢性能增强机制[J]. 聊城大学学报(自然科学版),2023,36(2):1−10.LI Yan, LI Zhuo, LIU Enzhou. Preparation of NiMoO4/ZnIn2S4 S-Scheme heterojunctions and enhancement mechanism of photocatalytic hydrogen production[J]. J of Liaocheng Univ,2023,36(2):1−10.
|
[36] |
薛晋波, 高国翔, 申倩倩, 等. 新型S型CdS-BiVO4异质结光电极的构筑及产氢性能研究[J]. 高等学校化学学报,2021,42(8):2493−2499.XUE Jinbo, GAO Guoxiang, SHEN Qianqian, et al. Construction of a novel S-scheme CdS-BiVO4 heterojunction photoelectrodes and research on hydrogen production[J]. Chem Res Chin Univ,2021,42(8):2493−2499.
|