留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn/TiO2低温SCR催化剂钾中毒机理研究

方鼎立 张成 李君臣 谭鹏 马仑 方庆艳 陈刚

方鼎立, 张成, 李君臣, 谭鹏, 马仑, 方庆艳, 陈刚. Mn/TiO2低温SCR催化剂钾中毒机理研究[J]. 燃料化学学报(中英文), 2024, 52(2): 195-205. doi: 10.19906/j.cnki.JFCT.2023054
引用本文: 方鼎立, 张成, 李君臣, 谭鹏, 马仑, 方庆艳, 陈刚. Mn/TiO2低温SCR催化剂钾中毒机理研究[J]. 燃料化学学报(中英文), 2024, 52(2): 195-205. doi: 10.19906/j.cnki.JFCT.2023054
FANG Dingli, ZHANG Cheng, LI Junchen, TAN Peng, MA Lun, FANG Qingyan, CHEN Gang. Study on the mechanism of K-poisoning in Mn/TiO2 low temperature SCR catalysts[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 195-205. doi: 10.19906/j.cnki.JFCT.2023054
Citation: FANG Dingli, ZHANG Cheng, LI Junchen, TAN Peng, MA Lun, FANG Qingyan, CHEN Gang. Study on the mechanism of K-poisoning in Mn/TiO2 low temperature SCR catalysts[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 195-205. doi: 10.19906/j.cnki.JFCT.2023054

Mn/TiO2低温SCR催化剂钾中毒机理研究

doi: 10.19906/j.cnki.JFCT.2023054
基金项目: 国家自然科学基金(52076090)、湖北省自然科学基金重点项目( 2023AFA039)资助
详细信息
    通讯作者:

    Tel: 158-0273-6522 , E-mail: chengzhang@mail.hust.edu.cn

  • 中图分类号: O643.36

Study on the mechanism of K-poisoning in Mn/TiO2 low temperature SCR catalysts

Funds: The project was supported by National Natural Science Foundation of China (52076090) and Natural Science Foundation of Hubei Province (2023AFA039) .
  • 摘要: Mn/TiO2具有良好的低温NH3选择性催化还原NOx(SCR)的活性。烟气中存在的碱金属会从物理和化学上毒害催化剂导致Mn/TiO2催化剂中毒失活。论文以暴露{101}面TiO2为载体制备Mn/TiO2催化剂,采用浸渍法制备K中毒催化剂,研究了Mn/TiO2低温SCR催化剂钾中毒机理。实验发现,Mn/TiO2催化剂脱硝效率随K中毒浓度增加而减少;新鲜Mn/TiO2催化剂表面NH3-SCR反应由E-R和L-H机理共同控制;K吸附会导致催化剂比表面积降低,催化剂表面Mn4+、化学吸附氧比例降低,表面酸性位点数量减少,导致脱硝活性降低;同时K更易吸附在Mn顶位以及桥接O位附近,导致NO的吸附活化受到严重遏制,同时削弱NH3的吸附,使得L-H机理受到阻断,只能以E-R机理控制为主。
  • FIG. 2928.  FIG. 2928.

    FIG. 2928.  FIG. 2928.

    图  1  催化剂活性评价装置示意图

    Figure  1  Schematic diagram of the catalyst activity evaluation device

    图  2  NO转化率随温度的变化

    Figure  2  NO conversion versus temperature

    图  3  锐钛矿{101}晶面的(a)SEM和(b)TEM照片

    Figure  3  (a) SEM and (b) TEM images of anatase {101} crystal faces

    图  4  Mn/TiO2催化剂的SEM和EDS照片

    Figure  4  SEM and EDS images of Mn/TiO2 catalyst samples (Ti: cyan; O: red; Mn: purple; K: green)

    图  5  载体和催化剂的XRD谱图

    Figure  5  XRD patterns of carrier and catalyst samples

    图  6  Mn/TiO2催化剂的Mn 2p和O 1s XPS谱图

    Figure  6  Mn 2p and O 1s XPS results for Mn/TiO2 catalysts

    图  7  200 ℃下催化剂表面NO和预先吸附NH3的反应光谱谱图

    Figure  7  Reaction spectra of NO and pre-adsorbed NH3 on the surface of the catalysts at 200 ℃

    图  8  200 ℃下催化剂表面NH3和预先吸附NO的反应光谱谱图

    Figure  8  Reaction spectra of NH3 and pre-adsorbed NO on the catalyst surface at 200 ℃

    图  9  Mn/TiO2及其K中毒催化剂优化构型

    Figure  9  Optimised configuration of Mn/TiO2 and its K-poisoning catalyst

    图  10  NH3、NO在Mn/TiO2表面吸附构型

    Figure  10  Adsorption configuration of NH3 and NO on Mn/TiO2 surface

    图  11  K中毒对Mn/TiO2影响机理

    Figure  11  Mechanism of the effect of K poisoning on Mn/TiO2

    表  1  催化剂表面元素分析(EDS)

    Table  1  Analysis of elemental concentrations on the surface of catalyst samples (EDS)

    SampleK/%Mn/%O/%Ti/%
    Mn/TiO212.0351.2536.72
    0.01K- Mn/TiO20.2511.8155.3732.57
    0.02K- Mn/TiO20.4110.7756.9531.87
    0.045K- Mn/TiO21.239.9556.7232.10
    0.09K- Mn/TiO22.289.8257.1230.78
    下载: 导出CSV

    表  2  催化剂的BET参数

    Table  2  BET parameters for catalyst samples

    CatalystBET surface
    area /
    (m2·g−1)
    Pore volume
    ×10−2/(cm3·g−1)
    Average pore
    diameter/
    nm
    Mn/TiO252.712.19.2
    0.01K- Mn/TiO244.113.011.8
    0.02K- Mn/TiO244.412.911.7
    0.045K- Mn/TiO245.011.69.1
    0.09K- Mn/TiO242.311.39.1
    下载: 导出CSV

    表  3  催化剂表面元素分析(XPS)

    Table  3  Analysis of elemental concentrations on the surface of catalyst samples (XPS)

    SampleK/%Mn/% O/%
    Mn2+Mn3++Mn4+OβOα
    Mn/TiO232.667.4 49.250.8
    0.01K- Mn/TiO20.5535.164.965.134.9
    0.02K- Mn/TiO20.5338.761.365.234.8
    0.045K- Mn/TiO22.1341.758.372.427.6
    0.09K- Mn/TiO22.5847.852.272.827.2
    下载: 导出CSV
  • [1] ZHAO S, PENG J, GE R, et al. Research progress on selective catalytic reduction (SCR) catalysts for NOx removal from coal-fired flue gas[J]. Fuel Process Technol,2022,236:107432.
    [2] WANG X, LI B, WANG Y, et al. Insight into the dynamic behaviors of reactants with temperature over a TiOx-based catalyst for NOx removal via NH3-SCR[J]. Appl Surf Sci,2022,605:154689.
    [3] 中华人民共和国国家发展和改革委员会. 煤电节能减排升级与改造行动计划(2014−2022年) [EB/OL]. (2014-09-12) [2019-12-30]. http://www.sdpc.gov.cn/gzdt/201409/t20140919_626240.html.

    National Development and Reform Commission of the People's Republic of China. Action Plan for Energy Saving and Emission Reduction Upgrading and Retrofitting of Coal Power (2014−2022) [EB/OL]. (2014-09-12) [2019-12-30]. http://www.sdpc.gov.cn/gzdt/201409/t20140919_626240.html.
    [4] GB 4915—2013, 中华人民共和国生态环境部. 水泥工业大气污染物排放标准[S]. 2014.

    GB 4915—2013, Ministry of Ecology and Environment of the People's Republic of China. Emission Standard for Air Pollutants in Cement Industry[S]. 2014.
    [5] 中华人民共和国生态环境部. 关于推进实施钢铁行业超低排放的意见[EB/OL]. (2019-04-28)[2019-11-10]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201904/t20190429_701463.html.

    Ministry of Ecology and Environment of the People's Republic of China. Opinions on Promoting the Implementation of Ultra-Low Emission in the Iron and Steel Industry[EB/OL]. (2019-04-28)[2019-11-10]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201904/t20190429_701463.html.
    [6] 沈伯雄, 卢凤菊, 高兰君, 等. 中温商业SCR催化剂碱和碱土中毒特性研究[J]. 燃料化学学报,2016,44(4):500−506.

    SHEN Boxiong, LU Fengju, GAO Lanjun, et al. Characterisation of alkali and alkaline earth poisoning of medium temperature commercial SCR catalysts[J]. J Fuel Chem Technol,2016,44(4):500−506.
    [7] KONG M, LIU Q, WANG X, et al. Performance impact and poisoning mechanism of arsenic over commercial V2O5-WO3/TiO2 SCR catalyst[J]. Catal Commun,2015,72:121−126. doi: 10.1016/j.catcom.2015.09.029
    [8] 马昊. 水泥炉窑烟气低温SCR 脱硝成型催化剂优化研究[D]. 杭州: 浙江大学, 2015.

    MA Hao. Optimisation of low temperature SCR denitrification catalyst for cement kiln flue gas[D]. Hangzhou: Zhejiang University, 2015.
    [9] 石朝亭, 蔡军, 任强强, 等. 燃煤水泥窑炉低NOx 排放控制技术研究进展[J]. 洁净煤技术,2020,26(1):174−183.

    SHI Chaoting, CAI Jun, REN Qiangqiang, et al. Research progress on low NOx emission control technology for coal-fired cement kilns[J]. Clean Coal Technol,2020,26(1):174−183.
    [10] DENG S, MENG T, XU B, et al. Advanced MnOx/TiO2 catalyst with preferentially exposed anatase {001} facet for low-temperature SCR of NO[J]. ACS Catal,2016,6(9):5807−5815. doi: 10.1021/acscatal.6b01121
    [11] CHEN L, LI J, GE M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J]. Chem Eng J,2011,170(2):531−537.
    [12] 张成, 李君臣, 方鼎立, 等. Mn基低温SCR催化剂抗中毒研究进展[J]. 洁净煤技术,2022,28(10):110−135.

    ZHANG Cheng, LI Junchen, FANG Dingli, et al. Progress of anti-poisoning research on Mn-based low-temperature SCR catalysts[J]. Clean Coal Technol,2022,28(10):110−135.
    [13] WAN Q, DUAN L, LI J, et al. Deactivation performance and mechanism of alkali (earth) metalson V2O5-WO3/TiO2 catalyst for oxidation of gaseous elemental mercury in simulated coal-firedflue gas[J]. Catal Today,2011,175:189−195. doi: 10.1016/j.cattod.2011.03.011
    [14] KANG K, YAO X, HUANG Y, et al. Insights into the co-doping effect of Fe3+ and Zr4+ on the anti-K performance of CeTiOx catalyst for NH3-SCR reaction[J]. J Hazard Mater,2021,416:125821.
    [15] GUO R-T, WANG Q-S, PAN W-G, et al. The poisoning effect of Na and K on Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3: A comparative study[J]. Appl Surf Sci,2014,317:111−116.
    [16] WEI L, CUI S, GUO H, et al. The effect of alkali metal over Mn/TiO2 for low-temperature SCR of NO with NH3 through DRIFT and DFT[J]. Comput Mater Sci,2018,(144):216−222.
    [17] ZHU N, SHAN W, SHAN Y, et al. Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO with NH3[J]. Chem Eng J,2020,388:124250.
    [18] JI J, TANG Y, HAN L, et al. Cerium manganese oxides coupled with ZSM-5: A novel SCR catalyst with superior K resistance[J]. Chem Eng J,2022,445:136530.
    [19] GAO E, FENG W, HUANG B, et al. The enhanced resistance to Na+-poisoning of MnCoCrOx SCR catalyst by acidity regulation: The mechanism of sulfuric acid pretreatment[J]. Mol Catal,2022,518:112084.
    [20] JIANG Y, HAN D, YANG L, et al. Improving the K resistance effectively of CeO2-TiO2 catalyst by Nb doping for NH3-SCR reaction[J]. Process Saf Environ Prot,2022,160:876−886.
    [21] SHI Q, LI Y, ZHOU Y, et al. The shape effect of TiO2 in VOx/TiO2 catalysts for selective reduction of NO by NH3[J]. J Mater Chem A,2015,3:14409−14415.
    [22] JIANG Y, LIU T, LAI C, et al. Deactivation of CeO2-TiO2 catalyst by K2SO4 for NH3-SCR: An experimental and DFT study[J]. Appl Surf Sci,2021,547:149196.
    [23] CHEN S, VASILIADES M A, YAN Q, et al. Remarkable N2-selectivity enhancement of practical NH3-SCR over Co0.5Mn1Fe0.25Al0.75Ox-LDO: The role of Co investigated by transient kinetic and DFT mechanistic studies[J]. Appl Catal B: Environ,2020,277:119186.
    [24] CHEN L, REN S, JIANG Y, et al. Effect of Mn and Ce oxides on low-temperature NH3-SCR performance over blast furnace slag-derived zeolite X supported catalysts[J]. Fuel,2022,320:123969.
    [25] FU Z, ZHANG G, HAN W, et al. The water resistance enhanced strategy of Mn based SCR catalyst by construction of TiO2 shell and superhydrophobic coating[J]. Chem Eng J,2021,426:131334.
    [26] XIE S, LI L, JIN L, et al. Low temperature high activity of M (M=Ce, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism[J]. Appl Surf Sci,2020,515:146014.
    [27] PAN W-G, ZHOU Y, GUO R-T, et al. Influence of calcination temperature on CeO2-CuO catalyst for the selective catalytic reduction of NO with NH3[J]. Environ Prog Sustainable,2014,33(2):385−389. doi: 10.1002/ep.11793
    [28] WANG F, DAI H, DENG J, et al. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: Highly effective catalysts for the removal of toluene[J]. Environ Sci Technol,2012,46(7):4034−41. doi: 10.1021/es204038j
    [29] ZHANG S, LIU X, ZHONG Q, et al. Effect of Y doping on oxygen vacancies of TiO2 supported MnOx for selective catalytic reduction of NO with NH3 at low temperature[J]. Catal Commun,2012,25:7−11.
    [30] WEI L, WANG Z, LIU Y, et al. Support promotion effect on the SO2 and K+ co-poisoning resistance of MnO2/TiO2 for NH3-SCR of NO[J]. J Hazard Mater,2021,416:126117.
    [31] LI F, XIE J, FANG D, et al. Mechanistic study of Ce-modified MnOx/TiO2 catalysts with high NH3-SCR performance and SO2 resistance at low temperatures[J]. Res Chem Intermed,2017,43(10):5413−5432. doi: 10.1007/s11164-017-2937-0
    [32] LI X, NIU Y, LI J, et al. Trace Co doping improves NH3-SCR performance and poisoning resistance of Ce-Mn-based catalysts[J]. Chem Eng J,2023,454:140180.
    [33] ZHOU X, WANG P, SHEN Z, et al. Low-temperature NOx reduction over hydrothermally stable SCR catalysts by engineering low-coordinated Mn active sites[J]. Chem Eng J,2022,442:136182.
    [34] CHEN L, REN S, PENG H, et al. Low-cost Mn-Ce/CuX catalyst from blast furnace slag waste for efficient low-temperature NH3-SCR[J]. Appl Catal A: Gen,2022,646:118868.
    [35] GAO X, DU X S, CUI L W, et al. A Ce-Cu-Ti oxide catalyst for the selective catalytic reduction of NO with NH3[J]. Catal Commun,2010,12(4):255−258. doi: 10.1016/j.catcom.2010.09.029
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  209
  • HTML全文浏览量:  50
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-01
  • 修回日期:  2023-07-03
  • 录用日期:  2023-07-03
  • 网络出版日期:  2023-09-01
  • 刊出日期:  2024-02-02

目录

    /

    返回文章
    返回