[1] |
ASHERIFT A T‚ CHEETHAM A K, GREEN M L H. Partial oxidation of methane to synthesis gas using carbon dioxide[J]. Nature,1991,52:225−226.
|
[2] |
ALIOUI O, BADAWI M, ERTO A, et al. Contribution of DFT to the optimization of Ni-based catalysts for dry reforming of methane: a review [J]. Catal Rev, 2022, 1-50.
|
[3] |
WANG Z J, ZHAO Y, CUI L, et al. CO2 Reforming of methane over argon plasma reduced Rh/Al2O3 catalyst: a case study of alternative catalyst reduction via non-hydrogen plasmas[J]. Green Chem,2007,9:554−559. doi: 10.1039/b614276a
|
[4] |
BRADFORD M C J, VANNICE M A. CO2 reforming of CH4[J]. Catal Rev.,1999,41(1):1−42. doi: 10.1081/CR-100101948
|
[5] |
GADALLA A M, BARBARA B. The Role of catalyst support on the activity of nickel for reforming methane with CO [J], Chem Eng Sci, 1988, 43: 3049-3062
|
[6] |
TOKUNAGA O, OGASAWARA S. Reduction of carbon dioxide with methane over Ni-catalyst [J], React Kineti Catal L, 1989, 39(1): 69-74.
|
[7] |
ZHU Y A, CHEN D, ZHOU X G, et al. DFT studies of dry reforming of methane on Ni catalyst[J]. Catal Today,2009,148:260−267. doi: 10.1016/j.cattod.2009.08.022
|
[8] |
FUJITA T, PENG X B, YAMAGUCHI A, CHO Y, ZHANG Y Z, HIGUCHI K, YAMAMOTO Y, TOKUNAGA T, ARAI S, MIYAUCHI M, ABE H. Nanoporous nickel composite catalyst for the dry reforming of methane[J]. ACS Omega,2018,3(12):19251−16657.
|
[9] |
ABDULLAH B, ABD GHANI N A, VO D V N. Recent advances in dry reforming of methane over Ni-based catalysts[J]. J Clean Prod,2017,162:170−185.s. doi: 10.1016/j.jclepro.2017.05.176
|
[10] |
FAN M S, ABDULLAH A Z, BHATIA S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas[J]. Chem Cat Chem,2009,1(2):192−208.
|
[11] |
WU Z, YANG B, MIAO S, et al. Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane[J]. ACS Catal,2019,9(4):2693−2700. doi: 10.1021/acscatal.8b02821
|
[12] |
ALSABBAN B, FALIVENE L, KOZLOV S M, et al. In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH4/CO2 reaction[J]. Appl Catal B Environ,2017,213:177−189. doi: 10.1016/j.apcatb.2017.04.076
|
[13] |
LYU L, SHENGENE M, MA Q, et al. Synergy of macro-meso bimodal pore and Ni-Co alloy for enhanced stability in dry reforming of methane[J]. Fuel,2022,310:122375. doi: 10.1016/j.fuel.2021.122375
|
[14] |
Turap Y, Wang I, Fu T, et al, Co-Ni alloy supported on CeO2 as a bimetallic catalyst for dry reforming of methane [J]. Int J Hydrogen Energ, 2020, 45(11), 6538-6548.
|
[15] |
Chaudhary P K, Deo G, Process and catalyst improvements for the dry reforming of methane [J]. Chem Eng Sci, 2023, 276: 118767.
|
[16] |
Palanichamy K, Umasankar S, Ganesh S, et al. Highly coke resistant NiCo/KCC-1 catalysts for dry reforming of methane[J]. Int J Hydrogen Energ,2023,48(31):11727−11745. doi: 10.1016/j.ijhydene.2022.12.076
|
[17] |
李文英, 冯杰, 谢克昌, 等. CH4-CO2重整反应镍催化剂的积炭性能研究[J]. 报燃料化学学报(中英文).,1997,25(5):460−464.Li Wen-ying, Feng Jie, Xie Ke-chang, et al. Studies on carbon deposition of Ni catalyst in CH4-CO2 reforming reaction[J]. J Fuel Chem Technol,1997,25(5):460−464.
|
[18] |
BECKE A D, Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys Rev A, 1988, 38: 3098.
|
[19] |
STEPHENS P J, DEVLIN F J, CHABLOWSKI C F. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J Phys Chem,1994,98(45):11623. doi: 10.1021/j100096a001
|
[20] |
Hay P J, Wadt W R. Ab inito effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. J Chem Phys,1985,82:270−83. doi: 10.1063/1.448799
|
[21] |
HE J, YANG Z Q, DING C H, et al. Methane dehydrogenation and oxidation process over Ni-based bimetallic catalysts[J]. Fuel,2018,226:400−409. doi: 10.1016/j.fuel.2018.04.031
|
[22] |
GONZALEZ C, SCHLEGEL H B. An improved algorithm for reaction path following[J]. J Chem Phys,1989,90:2154. doi: 10.1063/1.456010
|
[23] |
GONZALEZ C, SCHLEGEL H B. Improved algorithms for reaction path following: Higher-order implicit algorithms[J]. J Chem Phys,1991,95:5853. doi: 10.1063/1.461606
|
[24] |
FRISCH M J, TRUCKS G W, SCHEGEL H B, et al. Gaussian Inc, Wallingford CT; 2013. Gaussian 09, Revision D. 01.
|
[25] |
KOZUCH S, SHAIK S. A combined Kinetic-Quantum mechanical model for assessment of catalytic cycles: Application to cross-coupling and heck reactions[J], J Am Chem Soc. 2006, 128: 3355-3365.
|
[26] |
KOZUCH S, SHAIK S. Kinetic-Quantum chemical model for catalytic cycles: The Haber-Bosch process and the effect of reagent concentration[J]. J Phys Chem A,2008,112:6032−6041. doi: 10.1021/jp8004772
|
[27] |
UHE A, KOZUCH S, SHAIK S. Software News and Update Automatic analysis of computed catalytic cycles[J]. J Comput Chem,2011,32:978−985. doi: 10.1002/jcc.21669
|
[28] |
KOZUCH S, SHAIK S. How to conceptualize catalytic cycles? The energetic span model[J]. Acc Chem Res,2011,44:101−110. doi: 10.1021/ar1000956
|
[29] |
陈涛, 方镭, 罗伟, 等. 双金属合金团簇M12Ni(M=Pt, Sn, Cu)催化甲烷干法重整反应的理论研究[J]. 高等学校化学学报,2019,40(10):2135−2142. doi: 10.7503/cjcu20190267CHEN Tao, FANG Lei, LUO Wei, et al. Theoretical study of dry reforming of methane catalyzed by bimetallic alloy cluster M12Ni(M = Pt, Sn, Cu)[J]. Chem J Chin U,2019,40(10):2135−2142. doi: 10.7503/cjcu20190267
|
[30] |
FOPPA L, MARGOSSIAN T, KIM SM, et al. Contrasting the role of Ni/Al2O3 interfaces in water-gas shift and dry reforming of methane[J]. J Am Chem Soc,2017,139:17128−17139. doi: 10.1021/jacs.7b08984
|
[31] |
Chen S Y, Zaffran J, Yang B. Dry reforming of methane over the cobalt catalyst: theoretical insights into the reaction kinetics and mechanism for catalyst deactivation[J]. Appl Catal B,2020,270:118859. doi: 10.1016/j.apcatb.2020.118859
|
[32] |
Zhang L Y, Meng Y, Yang J M, et al. Theoretical study on dry reforming of methane catalyzed by Cu12M (M = Cu, Fe, Co, Ni) core-shell bimetallic clusters[J]. Fuel,2021,303:121263. doi: 10.1016/j.fuel.2021.121263
|
[33] |
李杰, 李慧. Cu13、Cu12Zr和Cu12Zn团簇上CO2还原反应的密度泛函理论研究[J]. 燃料化学学报(中英文).,2023,51(3):314−319.LI Jie, LI Hui. Density functional theory study of CO2 reduction on Cu13, Cu12Zr and Cu12Zn clusters[J]. J Fuel Chem Technol,2023,51(3):314−319.
|