留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镍钴双原子团簇催化甲烷干重整反应机理及其动力学研究

张建辉 何启容 慕红梅 刘佳 李文雅 冷艳丽

张建辉, 何启容, 慕红梅, 刘佳, 李文雅, 冷艳丽. 镍钴双原子团簇催化甲烷干重整反应机理及其动力学研究[J]. 燃料化学学报(中英文), 2024, 52(2): 150-158. doi: 10.19906/j.cnki.JFCT.2023055
引用本文: 张建辉, 何启容, 慕红梅, 刘佳, 李文雅, 冷艳丽. 镍钴双原子团簇催化甲烷干重整反应机理及其动力学研究[J]. 燃料化学学报(中英文), 2024, 52(2): 150-158. doi: 10.19906/j.cnki.JFCT.2023055
ZHANG Jianhui, HE Qirong, MU Hongmei, LIU Jia, LI Wenya, LENG Yanli. Theoretical and kinetic studies on the reaction of dry reforming of methane catalyzed by Ni-Co diatomic clusters[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 150-158. doi: 10.19906/j.cnki.JFCT.2023055
Citation: ZHANG Jianhui, HE Qirong, MU Hongmei, LIU Jia, LI Wenya, LENG Yanli. Theoretical and kinetic studies on the reaction of dry reforming of methane catalyzed by Ni-Co diatomic clusters[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 150-158. doi: 10.19906/j.cnki.JFCT.2023055

镍钴双原子团簇催化甲烷干重整反应机理及其动力学研究

doi: 10.19906/j.cnki.JFCT.2023055
基金项目: 贵州民族大学自然科学基金一般项目(GZMUZK[2021]YB11),兰州资源环境职业技术大学黄河流域生态环境产教融合研发基金项目(HHYF2023-08)资助
详细信息
    通讯作者:

    E-mail: gslengyl@126.com

  • 中图分类号: O643.32

Theoretical and kinetic studies on the reaction of dry reforming of methane catalyzed by Ni-Co diatomic clusters

Funds: The project was supported by the Scientific Research Foundation of Guizhou Minzu University (GZMUZK[2021] YB11), Lanzhou Resources & Environment Voc-Tech University, Yellow River Basin Ecotope Integration of Industry and Education R&D Fund (HHYF2023-08)
  • 摘要: 本研究采用密度泛函理论方法对NiCo双原子团簇催化甲烷干法重整反应的体系进行了计算研究。通过计算结果得出甲烷脱氢、二氧化碳活化、C*和CH*的氧化、H2和H2O的生成四个反应过程可能的反应路径。最后,运用能量跨度模型分析循环反应的动力学信息,发现298K时甲烷脱氢过程中不易生成C*。913 K时甲烷脱氢过程决速中间体由IM1-1变成了IM6-1、决速过渡态由TS78-1变成了TS56-1;虽然可以生成C*,但能量跨度的减小加快了C*和CH*的消去。本工作可以了解NiCo双原子团簇催化甲烷干法重整的作用机理,为实验研究提供理论基础。
  • FIG. 2924.  FIG. 2924.

    FIG. 2924.  FIG. 2924.

    图  1  甲烷干法重整反应可能的反应路径

    Figure  1  The possible reaction path of methane dry reforming

    图  2  甲烷脱氢中各物质的几何构型(键长Å,键角°)

    Figure  2  Geometries of the methane dehydrogenation process (bond length in angstrom and bond angle in degrees)

    图  3  甲烷脱氢反应能量路径示意图

    Figure  3  Energy change for the methanedehydrogenation process

    图  4  二氧化碳活化中各物质的稳定几何构型(键长Å,键角°)

    Figure  4  Geometries of the activation process of CO2 (bond length in angstroms and bond angle in degrees)

    图  5  二氧化碳活化反应能量路径示意图

    Figure  5  Energy change for the reactions of the activation process of CO2

    图  6  C*和CH*的氧化反应各物质的稳定几何构型(键长Å,键角°)

    Figure  6  Geometries of reactions of oxidation process of C* and CH* species (bond length in angstroms and bond angle in degrees)

    图  7  C*和CH*的氧化反应中能量路径示意图

    Figure  7  Energy change for the oxidation process of C* and CH* species a: C* with O; b: C* with OH; c: CH* with O; d: CH* with OH.

    图  8  氢气和水的生成中各物质的稳定几何构型(键长Å,键角°)

    Figure  8  Energy changes during the formation of H2 and H2O (bond length in angstroms and bond angle in degrees)

    图  9  H2和H2O的生成反应能量路径示意图

    Figure  9  Energy change for the generate H2 and H2O process

    图  10  NiCo催化甲烷干法重整的反应路径

    Figure  10  Reaction path of DRM process on catalyst NiCo (Black arrows are possible reaction paths; Red arrows is the main reaction path)

  • [1] ASHERIFT A T‚ CHEETHAM A K, GREEN M L H. Partial oxidation of methane to synthesis gas using carbon dioxide[J]. Nature,1991,52:225−226.
    [2] ALIOUI O, BADAWI M, ERTO A, et al. Contribution of DFT to the optimization of Ni-based catalysts for dry reforming of methane: A review[J]. Catal Rev,2021,65(4):1−50.
    [3] WANG Z J, ZHAO Y, CUI L, et al. CO2 Reforming of methane over argon plasma reduced Rh/Al2O3 catalyst: A case study of alternative catalyst reduction via non-hydrogen plasmas[J]. Green Chem,2007,9:554−559. doi: 10.1039/b614276a
    [4] BRADFORD M C J, VANNICE M A. CO2 reforming of CH4[J]. Catal Rev,1999,41(1):1−42. doi: 10.1081/CR-100101948
    [5] GADALLA A M, BARBARA B. The role of catalyst support on the activity of nickel for reforming methane with CO[J]. Chem Eng Sci,1988,43:3049−3062.
    [6] TOKUNAGA O, OGASAWARA S. Reduction of carbon dioxide with methane over Ni-catalyst[J]. React Kineti Catal L,1989,39(1):69−74.
    [7] ZHU Y A, CHEN D, ZHOU X G, et al. DFT studies of dry reforming of methane on Ni catalyst[J]. Catal Today,2009,148:260−267. doi: 10.1016/j.cattod.2009.08.022
    [8] FUJITA T, PENG X B, YAMAGUCHI A, et al. Nanoporous nickel composite catalyst for the dry reforming of methane[J]. ACS Omega,2018,3(12):19251−16657.
    [9] ABDULLAH B, ABD GHANI N A, VO D V N. Recent advances in dry reforming of methane over Ni-based catalysts[J]. J Clean Prod,2017,162:170−185.s. doi: 10.1016/j.jclepro.2017.05.176
    [10] FAN M S, ABDULLAH A Z, BHATIA S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas[J]. ChemCatChem,2009,1(2):192−208.
    [11] WU Z, YANG B, MIAO S, et al. Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane[J]. ACS Catal,2019,9(4):2693−2700. doi: 10.1021/acscatal.8b02821
    [12] ALSABBAN B, FALIVENE L, KOZLOV S M, et al. In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH4/CO2 reaction[J]. Appl Catal B: Environ,2017,213:177−189. doi: 10.1016/j.apcatb.2017.04.076
    [13] LYU L, SHENGENE M, MA Q, et al. Synergy of macro-meso bimodal pore and Ni-Co alloy for enhanced stability in dry reforming of methane[J]. Fuel,2022,310:122375. doi: 10.1016/j.fuel.2021.122375
    [14] TURAP Y, WANG I, FU T, et al. Co-Ni alloy supported on CeO2 as a bimetallic catalyst for dry reforming of methane[J]. Int J Hydrogen Energy,2020,45(11):6538−6548.
    [15] CHAUDHARY P K, DEO G. Process and catalyst improvements for the dry reforming of methane[J]. Chem Eng Sci,2023,276:118767.
    [16] PALANICHAMY K, UMASANKAR S, GANESH S, et al. Highly coke resistant NiCo/KCC-1 catalysts for dry reforming of methane[J]. Int J Hydrogen Energy,2023,48(31):11727−11745. doi: 10.1016/j.ijhydene.2022.12.076
    [17] 李文英, 冯杰, 谢克昌, 等. CH4-CO2重整反应镍催化剂的积炭性能研究[J]. 燃料化学学报,1997,25(5):460−464.

    LI Wenying, FENG Jie, XIE Kechang, et al. Studies on carbon deposition of Ni catalyst in CH4-CO2 reforming reaction[J]. J Fuel Chem Technol,1997,25(5):460−464.
    [18] BECKE A D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys Rev A,1988,38:3098.
    [19] STEPHENS P J, DEVLIN F J, CHABLOWSKI C F. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields[J]. J Phys Chem,1994,98(45):11623. doi: 10.1021/j100096a001
    [20] HAY P J, WADT W R. Ab inito effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. J Chem Phys,1985,82:270−83. doi: 10.1063/1.448799
    [21] HE J, YANG Z Q, DING C H, et al. Methane dehydrogenation and oxidation process over Ni-based bimetallic catalysts[J]. Fuel,2018,226:400−409. doi: 10.1016/j.fuel.2018.04.031
    [22] GONZALEZ C, SCHLEGEL H B. An improved algorithm for reaction path following[J]. J Chem Phys,1989,90:2154. doi: 10.1063/1.456010
    [23] GONZALEZ C, SCHLEGEL H B. Improved algorithms for reaction path following: Higher-order implicit algorithms[J]. J Chem Phys,1991,95:5853. doi: 10.1063/1.461606
    [24] FRISCH M J, TRUCKS G W, SCHEGEL H B, et al. Gaussian 09[CP]. Revision D. 01, Gaussian Inc, Wallingford CT, 2013.
    [25] KOZUCH S, SHAIK S. A combined kinetic-quantum mechanical model for assessment of catalytic cycles: Application to cross-coupling and heck reactions[J]. J Am Chem Soc,2006,128:3355−3365.
    [26] KOZUCH S, SHAIK S. Kinetic-quantum chemical model for catalytic cycles: The Haber-Bosch process and the effect of reagent concentration[J]. J Phys Chem A,2008,112:6032−6041. doi: 10.1021/jp8004772
    [27] UHE A, KOZUCH S, SHAIK S. Software news and update automatic analysis of computed catalytic cycles[J]. J Comput Chem,2011,32:978−985. doi: 10.1002/jcc.21669
    [28] KOZUCH S, SHAIK S. How to conceptualize catalytic cycles? The energetic span model[J]. Acc Chem Res,2011,44:101−110. doi: 10.1021/ar1000956
    [29] 陈涛, 方镭, 罗伟, 等. 双金属合金团簇M12Ni(M=Pt, Sn, Cu)催化甲烷干法重整反应的理论研究[J]. 高等学校化学学报,2019,40(10):2135−2142. doi: 10.7503/cjcu20190267

    CHEN Tao, FANG Lei, LUO Wei, et al. Theoretical study of dry reforming of methane catalyzed by bimetallic alloy cluster M12Ni(M=Pt, Sn, Cu)[J]. Chem J Chin Univ,2019,40(10):2135−2142. doi: 10.7503/cjcu20190267
    [30] FOPPA L, MARGOSSIAN T, KIM SM, et al. Contrasting the role of Ni/Al2O3 interfaces in water-gas shift and dry reforming of methane[J]. J Am Chem Soc,2017,139:17128−17139. doi: 10.1021/jacs.7b08984
    [31] CHEN S Y, ZAFFRAN J, YANG B. Dry reforming of methane over the cobalt catalyst: Theoretical insights into the reaction kinetics and mechanism for catalyst deactivation[J]. Appl Catal B: Environ,2020,270:118859. doi: 10.1016/j.apcatb.2020.118859
    [32] ZHANG L Y, MENG Y, YANG J M, et al. Theoretical study on dry reforming of methane catalyzed by Cu12M (M=Cu, Fe, Co, Ni) core-shell bimetallic clusters[J]. Fuel,2021,303:121263. doi: 10.1016/j.fuel.2021.121263
    [33] 李杰, 李慧. Cu13、Cu12Zr和Cu12Zn团簇上CO2还原反应的密度泛函理论研究[J]. 燃料化学学报(中英文),2023,51(3):314−319.

    LI Jie, LI Hui. Density functional theory study of CO2 reduction on Cu13, Cu12Zr and Cu12Zn clusters[J]. J Fuel Chem Technol,2023,51(3):314−319.
  • 加载中
图(11)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  187
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-07-12
  • 录用日期:  2023-07-25
  • 网络出版日期:  2023-09-01
  • 刊出日期:  2024-02-02

目录

    /

    返回文章
    返回