[1] |
KOSINOV N, LIU C, HENSEN E J M, et al. Engineering of Transition Metal Catalysts Confined in Zeolites[J]. Chem Mater,2018,30:3177−3198. doi: 10.1021/acs.chemmater.8b01311
|
[2] |
O’NEILL B J, JACKSON D H K, LEE J, et al. Catalyst Design with Atomic Layer Deposition[J]. ACS Catal,2015,5:1804−1825. doi: 10.1021/cs501862h
|
[3] |
高亚, 徐丹, 王树元, 等. 原子层沉积构建高性能催化剂的研究进展[J]. 化工进展,2021,40:4242−4252. doi: 10.16085/j.issn.1000-6613.2020-1960GAO Y, XU Dan, WANG Shuyuan, et al. Recent progress in fabrication of high efficient catalysts by atomic layer deposition[J]. Chem Ind Eng Prog,2021,40:4242−4252. doi: 10.16085/j.issn.1000-6613.2020-1960
|
[4] |
GAO Z, QIN Y. Design and properties of confined nanocatalysts by atomic layer deposition[J]. Accounts Chem Res,2017,50:2309−2316. doi: 10.1021/acs.accounts.7b00266
|
[5] |
DETAVERNIER C, DENDOOVEN J, SREE S P, et al. Tailoring nanoporous materials by atomic layer deposition[J]. Chem Soc Rev,2011,40:5242−5253. doi: 10.1039/c1cs15091j
|
[6] |
XU D, WANG S, WU B, et al. Highly Dispersed Single-Atom Pt and Pt Clusters in the Fe-Modified KL Zeolite with Enhanced Selectivity for n-Heptane Aromatization[J]. ACS Appl Mater Inter,2019,11:29858−29867. doi: 10.1021/acsami.9b08137
|
[7] |
JIANG F, HUANG J, NIU L, et al. Atomic Layer Deposition of ZnO Thin Films on ZSM-5 Zeolite and Its Catalytic Performance in Chichibabin Reaction[J]. Catal Lett,2015,145:947−954. doi: 10.1007/s10562-014-1472-5
|
[8] |
ZHANG J, LU Z, WU W, et al. Mesopore differences between pillared lamellar MFI and MWW zeolites probed by atomic layer deposition of titania and consequences on photocatalysis[J]. Micropor Mesopor Mater,2019,276:260−269. doi: 10.1016/j.micromeso.2018.10.009
|
[9] |
WANG F, XIAO W, GAO L, et al. The growth mode of ZnO on HZSM-5 substrates by atomic layer deposition and its catalytic property in the synthesis of aromatics from methanol[J]. Catal Sci Technol,2016,6:3074−3086. doi: 10.1039/C5CY01651G
|
[10] |
HWANG S, PARDITKA B, CSERHáTI C, et al. IR Microimaging of Direction-Dependent Uptake in MFI-Type Crystals[J]. Chem-ing-tech,2017,89:1686−1693. doi: 10.1002/cite.201700128
|
[11] |
CAO L, LIU W, LUO Q, et al. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H2[J]. Nature,2019,565:631−635. doi: 10.1038/s41586-018-0869-5
|
[12] |
DING K, GULEC A, JOHNSON A M, et al. Identification of active sites in CO oxidation andwater-gas shift over supported Pt catalysts[J]. Science,2015,350:189−192. doi: 10.1126/science.aac6368
|
[13] |
SUN S H, ZHANG G X, GAUQUELIN N, et al. Single-atom catalysis using Pt/graphene achieved through atomic Layer deposition[J]. Sci Rep,2013,3:1775−1783. doi: 10.1038/srep01775
|
[14] |
SHAMZHY M, OPANASENKO M, CONCEPCIóN P, et al. New trends in tailoring active sites in zeolite-based catalysts[J]. Chem Soc Rev,2019,48:1095−1149. doi: 10.1039/C8CS00887F
|
[15] |
VUORI H, SILVENNOINEN R J, LINDBLAD M, et al. Beta Zeolite-Supported Iridium Catalysts by Gas Phase Deposition[J]. Catal Lett,2009,131:7−15. doi: 10.1007/s10562-009-0068-y
|
[16] |
VUORI H, PASANEN A, LINDBLAD M, et al. The effect of iridium precursor on oxide-supported iridium catalysts prepared by atomic layer deposition[J]. Appl Surf Sci,2011,257:4204−4210. doi: 10.1016/j.apsusc.2010.12.021
|
[17] |
GU X-M, ZHANG B, LIANG H-J, et al. Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid[J]. J Fuel Chem Technol,2017,45:714−722. doi: 10.1016/S1872-5813(17)30035-X
|
[18] |
XU D, WU B S, REN P J, et al. Controllable deposition of Pt nanoparticles into a KL zeolite by atomic layer deposition for highly efficient reforming of n-heptane to aromatics[J]. Catal Sci Technol,2017,7:1342−1350. doi: 10.1039/C6CY02652D
|
[19] |
XU D, WANG S Y, WU B S, et al. Tailoring Pt locations in KL zeolite by improved atomic layer deposition for excellent performance in n-heptane aromatization[J]. J Catal,2018,365:163−173. doi: 10.1016/j.jcat.2018.07.001
|
[20] |
YAN M, XU D, WU B, et al. Insight into the performance of different Pt/KL catalysts for n-alkane (C6–C8) aromatization: catalytic role of zeolite channels[J]. Catal Sci Technol,2022,12:1610−1618. doi: 10.1039/D1CY02090K
|
[21] |
WANG S, GAO Y, WEI L, et al. Engineering spatial locations of Pt in hierarchically porous KL zeolite by atomic layer deposition with enhanced n-heptane aromatization[J]. Fuel,2023,337:126852. doi: 10.1016/j.fuel.2022.126852
|
[22] |
WANG S, ZHANG D, MA Y, et al. Aqueous solution synthesis of Pt−M (M = Fe, Co, Ni) bimetallic nanoparticles and their catalysis for the hydrolytic dehydrogenation of ammonia borane[J]. ACS Appl Mater Inter,2014,6:12429−12435. doi: 10.1021/am502335j
|
[23] |
ZHANG B, GUO X, LIANG H, et al. Tailoring Pt–Fe2O3 interfaces for selective reductive coupling reaction to synthesize imine[J]. ACS Catal,2016,6:6560−6566. doi: 10.1021/acscatal.6b01756
|
[24] |
LIU L, LOPEZ-HARO M, LOPES C W, et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis[J]. Nat Mater,2019,18:866−873. doi: 10.1038/s41563-019-0412-6
|
[25] |
YANG H, CHEN Y, QIN Y. Application of atomic layer deposition in fabricating high-efficiency electrocatalysts[J]. Chin J Catal,2020,41:227−241. doi: 10.1016/S1872-2067(19)63440-6
|
[26] |
SONG J, MA H, TIAN Z, et al. The effect of Fe on Pt particle states in Pt/KL catalysts[J]. Appl Catal A,2015,492:31−37. doi: 10.1016/j.apcata.2014.12.017
|
[27] |
GOULD T D, LUBERS A M, CORPUZ A R, et al. Controlling Nanoscale Properties of Supported Platinum Catalysts through Atomic Layer Deposition[J]. ACS Catal,2015,5:1344−1352. doi: 10.1021/cs501265b
|
[28] |
HACKLER R A, MCANALLY M O, SCHATZ G C, et al. Identification of Dimeric Methylalumina Surface Species during Atomic Layer Deposition Using Operando Surface-Enhanced Raman Spectroscopy[J]. J Am Chem Soc,2017,139:2456−2463. doi: 10.1021/jacs.6b12709
|
[29] |
YAN H, LIN Y, WU H, et al. Bottom-up precise synthesis of stable platinum dimers on graphene[J]. Nat Commun,2017,8:1070−1081. doi: 10.1038/s41467-017-01259-z
|
[30] |
GEERTS L, RAMACHANDRAN R K, DENDOOVEN J, et al. Creation of Gallium Acid and Platinum Metal Sites in Bifunctional Zeolite Hydroisomerization and Hydrocracking Catalysts by Atomic Layer Deposition[J]. Catal Sci Technol,2020,10:1778−1788. doi: 10.1039/C9CY02610J
|
[31] |
WANG F, KANG X, ZHOU M, et al. Sn and Zn modified HZSM-5 for one-step catalytic upgrading of glycerol to value-added aromatics: Synergistic combination of impregnated Sn particles, ALD introduced ZnO film and HZSM-5 zeolite[J]. Appl Catal A,2017,539:80−89. doi: 10.1016/j.apcata.2017.04.005
|
[32] |
YAN M, WU B, YANG Y, et al. Highly efficient Sn-modified Pt/KY catalyst for n-octane reforming: the synergistic effect of Pt in different electronic states[J]. Catal Sci Technol,2023,13:1677−1685. doi: 10.1039/D3CY00011G
|
[33] |
WANG S, XU D, ZHU D, et al. Elucidating the restructuring-induced highly active bimetallic Pt-Co/KL catalyst for the aromatization of n-heptane[J]. Chem Commun,2020,56:892−895. doi: 10.1039/C9CC08845H
|
[34] |
WANG S, GAO Y, YI F, et al. Regulation of sub-nanometric platinum on BaKL zeolite for boosting n-heptane aromatization[J]. Fuel,2022,328:125281. doi: 10.1016/j.fuel.2022.125281
|
[35] |
XU D, WEI L, YAN M, et al. Zinc-assisted nanometric Pt cluster stabilized on KL zeolite via atomic layer deposition for the n-heptane aromatization[J]. Appl Catal A,2023,663:119308. doi: 10.1016/j.apcata.2023.119308
|
[36] |
MA Y, CHEN X, GUAN Y, et al. Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology[J]. J Catal,2021,397:44−57. doi: 10.1016/j.jcat.2021.03.022
|
[37] |
RYOO R, KIM J, JO C, et al. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis[J]. Nature,2020,585:221−224. doi: 10.1038/s41586-020-2671-4
|
[38] |
LIU S, REN J, ZHU S, et al. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerization performance[J]. J Catal,2015,330:485−496. doi: 10.1016/j.jcat.2015.07.027
|
[39] |
WANG Y, TAO Z, WU B, et al. Effect of metal precursors on the performance of Pt/ZSM-22 catalysts for n-hexadecane hydroisomerization[J]. J Catal,2015,322:1−13. doi: 10.1016/j.jcat.2014.11.004
|
[40] |
SREE S P, DENDOOVEN J, KORáNYI T I, et al. Aluminium atomic layer deposition applied to mesoporous zeolites for acid catalytic activity enhancement[J]. Catal Sci Technol, 2011, 1: 218−221.
|
[41] |
SREE S P, DENDOOVEN J, MAGUSIN P C M M, THOMAS K, et al. Hydroisomerization and hydrocracking activity enhancement of a hierarchical ZSM-5 zeolite catalyst via atomic layer deposition of aluminium[J]. Catal Sci Technol,2016,6:6177−6186. doi: 10.1039/C6CY00780E
|
[42] |
ZHAI L, ZHANG B, LIANG H, et al. The selective deposition of Fe species inside ZSM-5 for the oxidation of cyclohexane to cyclohexanone[J]. Science China Chemistry,2021,64:1088−1095. doi: 10.1007/s11426-020-9968-x
|
[43] |
YAN M, XU D, WANG S, et al. Selective regulation of Pt clusters inside KY zeolite using atomic layer deposition for n-octane reforming[J]. Fuel,2022,330:125671. doi: 10.1016/j.fuel.2022.125671
|
[44] |
VERHEYEN E, PULINTHANATHU SREE S, THOMAS K, et al. Catalytic activation of OKO zeolite with intersecting pores of 10- and 12-membered rings using atomic layer deposition of aluminium[J]. Chem Commun,2014,50:4610−4612. doi: 10.1039/C3CC49028A
|
[45] |
MIES M, REBROV E, JANSEN J, et al. Method for the in situ preparation of a single layer of zeolite Beta crystals on a molybdenum substrate for microreactor applications[J]. J Catal,2007,247:328−338. doi: 10.1016/j.jcat.2007.02.007
|
[46] |
MURAZA O, REBROV E, CHEN J, et al. Microwave-assisted hydrothermal synthesis of zeolite Beta coatings on ALD-modified borosilicate glass for application in microstructured reactors[J]. Chem Eng J,2008,135:S117−S120. doi: 10.1016/j.cej.2007.07.003
|