留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镁含量对Ni/MgAl2O4催化剂甲烷干重整反应性能的影响

吕帅帅 徐成 张荣俊 李红伟 刘英硕 文富利 侯朝鹏 孙霞 汪天也 吴玉 徐润 夏国富

吕帅帅, 徐成, 张荣俊, 李红伟, 刘英硕, 文富利, 侯朝鹏, 孙霞, 汪天也, 吴玉, 徐润, 夏国富. 镁含量对Ni/MgAl2O4催化剂甲烷干重整反应性能的影响[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2023058
引用本文: 吕帅帅, 徐成, 张荣俊, 李红伟, 刘英硕, 文富利, 侯朝鹏, 孙霞, 汪天也, 吴玉, 徐润, 夏国富. 镁含量对Ni/MgAl2O4催化剂甲烷干重整反应性能的影响[J]. 燃料化学学报(中英文). doi: 10.19906/j.cnki.JFCT.2023058
LÜ Shuai-shuai, XU Cheng, ZHANG Rong-jun, LI Hong-wei, LIU Ying-shuo, WEN Fu-li, HOU Chao-peng, SUN Xia, WANG Tian-ye, WU Yu, XU Run, XIA Guo-fu. Effect of Mg content in Ni/MgAl2O4 catalysts on catalytic performance during methane dry reforming reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023058
Citation: LÜ Shuai-shuai, XU Cheng, ZHANG Rong-jun, LI Hong-wei, LIU Ying-shuo, WEN Fu-li, HOU Chao-peng, SUN Xia, WANG Tian-ye, WU Yu, XU Run, XIA Guo-fu. Effect of Mg content in Ni/MgAl2O4 catalysts on catalytic performance during methane dry reforming reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.19906/j.cnki.JFCT.2023058

镁含量对Ni/MgAl2O4催化剂甲烷干重整反应性能的影响

doi: 10.19906/j.cnki.JFCT.2023058
基金项目: 国家重点研发计划 (2021YFE0191200)资助
详细信息
    通讯作者:

    Tel: 010-82368566 , E-mail: xiaguofu.ripp@sinopec.com

  • # 共同第一作者
  • 中图分类号: O614.81;O643.32

Effect of Mg content in Ni/MgAl2O4 catalysts on catalytic performance during methane dry reforming reaction

Funds: The project was supported by National Key Research and Development Program of China (2021YFE0191200).
  • 摘要: 甲烷干重整反应是CO2和CH4综合利用的有效途径,但此反应温度高,催化剂易因积碳和烧结而失活。本研究采用溶剂蒸发自组装法制备了不同Mg含量的镁铝尖晶石(MgAl2O4)载体,随后负载了金属Ni,并将该催化剂(Ni/x-MAO)应用于甲烷干重整制合成气反应。结合X射线衍射、氮气物理吸脱附和透射电镜等表征对催化剂的结构性质进行了分析,发现适量Mg的加入(10-15%)有利于提高载体的比表面积,并形成耐高温的有序介孔结构。该结构可以将Ni颗粒限域在孔道内,有利于形成高分散、小晶粒的活性物种,其在高温反应下不易烧结。同时,H2-TPR和XPS结果表明,10-15%的Mg含量有利于增强Ni与MgAl2O4的金属-载体相互作用,可以有效抑制Ni烧结,且其表面的活性氧物种可以有效抑制积碳生成。在性能评价中,10-15%的Mg含量的Ni/MgAl2O4催化剂呈现出优异的CH4和CO2转化率,在180 h的长周期活性评价期间,Ni/15-MAO催化剂的CH4转化率和CO2转化率分别保持在92.6%和92.5%左右,同时积碳量仅为0.89%,且反应后的Ni颗粒尺寸变化不大。
    1)  # 共同第一作者
  • 图  1  新鲜催化剂的(a)XRD谱图;(b)小角XRD谱图;(c)氮气物理吸脱附曲线和(d)孔径分布

    Figure  1  (a) XRD patterns; (b) small-angel XRD patterns; (c) N2 adsorption-desorption isotherms and (d) pore size distributions of the fresh catalysts

    图  2  新鲜催化剂的H2-TPR谱图

    Figure  2  H2-TPR profiles of the fresh catalysts

    图  3  还原催化剂的TEM图及其相应的金属颗粒尺寸分布:(a)Ni/10-MAO;(b)Ni/15-MAO;(c) Ni/20-MAO;(d)Ni/25-MAO

    Figure  3  TEM images of the reduced catalysts and the relevant metal size distribution: (a) Ni/10-MAO; (b) Ni/15-MAO; (c) Ni/20-MAO; (d) Ni/25-MAO

    图  4  还原催化剂的XPS谱图:(a)Ni 2p 和(b)O 1s

    Figure  4  XPS spectra of the reduced catalysts: (a) Ni 2p and (b) O 1s

    图  5  不同反应温度下的催化性能曲线:(a) CH4转化率;(b)CO2转化率和(c)H2/CO比;反应条件:CH4/CO2=1, GHSV=120000 mL·g−1·h−1, 1 atm.

    Figure  5  The catalytic performance curves of the (a) CH4 conversion; (b) CO2 conversion and (c) H2/CO ratio at various reaction temperatures; Reaction conditions: CH4/CO2=1, GHSV=120000 mL·g−1·h−1, 1 atm.

    图  6  反应后催化剂的TEM图及其相应的金属颗粒尺寸分布:(a)Ni/10-MAO;(b)Ni/15-MAO;(c)Ni/20-MAO;(d)Ni/25-MAO.

    Figure  6  TEM images of the spent catalysts and the relevant metal size distribution: (a) Ni/10-MAO; (b) Ni/15-MAO; (c) Ni/20-MAO; (d) Ni/25-MAO

    图  7  (a)Ni/15-MAO催化剂的稳定性测试;(b)反应后Ni/15-MAO催化剂的TEM图及其相应的金属颗粒尺寸分布

    Figure  7  (a) Stability test of the Ni/15-MAO catalyst; (b) TEM image of the spent Ni/15-MAO catalyst and the relevant metal size distribution

    表  1  新鲜催化剂的孔结构参数

    Table  1  Pore structure parameters of the fresh catalysts

    CatalystBET surface area S/(m2·g−1)Total pore volume v/(cm3·g−1)Average pore size d/nm
    Ni/10-MAO247.30.62810.2
    Ni/15-MAO203.10.4719.3
    Ni/20-MAO181.20.4249.4
    Ni/25-MAO177.10.3948.9
    下载: 导出CSV

    表  2  还原催化剂的XPS分析数据

    Table  2  XPS analysis results of the reduced catalysts

    CatalystNi 2pO 1s
    Ni content (%)aNi0/(Ni0 + Ni2 + ) (%)Oα (%)Oβ (%)
    Ni/10-MAO1.5619.646.553.5
    Ni/15-MAO1.8013.145.354.8
    Ni/20-MAO5.44N.D.56.943.1
    Ni/25-MAO5.73N.D.54.545.5
    a 催化剂表面Ni含量
    下载: 导出CSV
  • [1] ABDULRASHEED A, JALIL A A, GAMBO Y, et al. A review on catalyst development for dry reforming of methane to syngas: Recent advances[J]. Renew Sust Energ Rev,2019,108:175−193. doi: 10.1016/j.rser.2019.03.054
    [2] USMAN M, WAN DAUD W, ABBAS H F. Dry reforming of methane: Influence of process parameters-A review[J]. Renew Sust Energ Rev,2015,45:710−744. doi: 10.1016/j.rser.2015.02.026
    [3] PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chem Soc Rev,2014,43(22):7813−7837. doi: 10.1039/C3CS60395D
    [4] JANG W-J, SHIM J-O, KIM H-M, et al. A review on dry reforming of methane in aspect of catalytic properties[J]. Catal Today,2019,324:15−26. doi: 10.1016/j.cattod.2018.07.032
    [5] 李嘉卿, 徐彬, 王文博, 等. 等离子体催化甲烷干重整实验研究[J]. 燃料化学学报(中英文),2021,49(8):1161−1172. doi: 10.1016/S1872-5813(21)60070-1

    LI Jia-qing, XU Bin, WANG Wen-bo, et al. Experimental study on dry reforming of methane by a plasma catalytic hybrid system[J]. J Fuel Chem Technol.,2021,49(8):1161−1172. doi: 10.1016/S1872-5813(21)60070-1
    [6] WANG C, SUN N, ZHAO N, et al. Coking and deactivation of a mesoporous Ni–CaO–ZrO2 catalyst in dry reforming of methane: A study under different feeding compositions[J]. Fuel,2015,143:527−535. doi: 10.1016/j.fuel.2014.11.097
    [7] BOUKHA Z, JIMÉNEZ-GONZÁLEZ C, RIVAS B de, et al. Synthesis, characterisation and performance evaluation of spinel-derived Ni/Al2O3 catalysts for various methane reforming reactions[J]. Appl Catal B-Environ,2014,158-159:190−201. doi: 10.1016/j.apcatb.2014.04.014
    [8] ALABI W O, SULAIMAN K O, WANG H, et al. Effect of spinel inversion and metal-support interaction on the site activity of Mg-Al-Ox supported Co catalyst for CO2 reforming of CH4[J]. J CO2 Util,2020,37:180−187. doi: 10.1016/j.jcou.2019.12.006
    [9] LI S, ZHANG G, WANG J, et al. Enhanced activity of Co catalysts supported on tungsten carbide-activated carbon for CO2 reforming of CH4 to produce syngas[J]. Int J Hydrog Energy,2021,46(56):28613−28625. doi: 10.1016/j.ijhydene.2021.06.085
    [10] ALABI W O, SULAIMAN K O, WANG H. Sensitivity of the properties and performance of Co catalyst to the nature of support for CO2 reforming of CH4[J]. Chem Eng J,2020,390:124486. doi: 10.1016/j.cej.2020.124486
    [11] THEOFANIDIS S A, GALVITA V V, POELMAN H, et al. Enhanced Carbon-Resistant Dry Reforming Fe-Ni Catalyst: Role of Fe[J]. ACS Catal,2015,5(5):3028−3039. doi: 10.1021/acscatal.5b00357
    [12] BRADFORD M C, VANNICE M. CO2 Reforming of CH4 over Supported Ru Catalysts[J]. J Catal,1999,183(1):69−75. doi: 10.1006/jcat.1999.2385
    [13] MARK M F, MAIER W F. CO2-Reforming of Methane on Supported Rh and Ir Catalysts[J]. J Catal,1996,164(1):122−130. doi: 10.1006/jcat.1996.0368
    [14] MUNERA J, IRUSTA S, CORNAGLIA L, et al. Kinetics and reaction pathway of the CO2 reforming of methane on Rh supported on lanthanum-based solid[J]. J Catal,2007,245(1):25−34. doi: 10.1016/j.jcat.2006.09.008
    [15] WANG H, RUCKENSTEIN E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: the effect of support[J]. Appl Catal A-Gen,2000,204(1):143−152. doi: 10.1016/S0926-860X(00)00547-0
    [16] O’CONNOR A M, SCHUURMAN Y, ROSS J R, et al. Transient studies of carbon dioxide reforming of methane over Pt/ZrO2 and Pt/Al2O3[J]. Catal Today,2006,115(1-4):191−198. doi: 10.1016/j.cattod.2006.02.051
    [17] YU M, ZHU Y-A, LU Y, et al. The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction[J]. Appl Catal B-Environ,2015,165:43−56. doi: 10.1016/j.apcatb.2014.09.066
    [18] SHINDE V M, MADRAS G. Catalytic performance of highly dispersed Ni/TiO2 for dry and steam reforming of methane[J]. RSC Adv.,2014,4(10):4817. doi: 10.1039/c3ra45961f
    [19] ZHAO Q, WANG Y, WANG Y, et al. Steam reforming of CH4 at low temperature on Ni/ZrO2 catalyst: Effect of H2O/CH4 ratio on carbon deposition[J]. Int J Hydrog Energy,2020,45(28):14281−14292. doi: 10.1016/j.ijhydene.2020.03.112
    [20] CHENG Z X, ZHAO X G, LI J L, et al. Role of support in CO2 reforming of CH4 over a Ni/γ-Al2O3 catalyst[J]. Appl Catal A-Gen,2001,205(1-2):31−36. doi: 10.1016/S0926-860X(00)00560-3
    [21] CUI Y, ZHANG H, XU H, et al. Kinetic study of the catalytic reforming of CH4 with CO2 to syngas over Ni/α-Al2O3 catalyst: The effect of temperature on the reforming mechanism[J]. Appl Catal A-Gen,2007,318:79−88. doi: 10.1016/j.apcata.2006.10.044
    [22] GUO Y, FENG J, LI W. Effect of the Ni size on CH4 /CO2 reforming over Ni/MgO catalyst: A DFT study[J]. Chin J Chem Eng,2017,25(10):1442−1448. doi: 10.1016/j.cjche.2017.03.024
    [23] LA PAROLA V, LIOTTA L F, PANTALEO G, et al. CO2 reforming of CH4 over Ni supported on SiO2 modified by TiO2 and ZrO2: Effect of the support synthesis procedure[J]. Appl Catal A-Gen,2022,642:118704. doi: 10.1016/j.apcata.2022.118704
    [24] PEREñIGUEZ R, GONZALEZ-DELACRUZ V M, CABALLERO A, et al. LaNiO3 as a precursor of Ni/La2O3 for CO2 reforming of CH4: Effect of the presence of an amorphous NiO phase[J]. Appl Catal B-Environ,2012,123-124:324−332. doi: 10.1016/j.apcatb.2012.04.044
    [25] BAHARUDIN L, RAHMAT N, OTHMAN N H, et al. Formation, control, and elimination of carbon on Ni-based catalyst during CO2 and CH4 conversion via dry reforming process: A review[J]. J CO2 Util,2022,61:102050. doi: 10.1016/j.jcou.2022.102050
    [26] GHOLIZADEH F, IZADBAKHSH A, HUANG J, et al. Catalytic performance of cubic ordered mesoporous alumina supported nickel catalysts in dry reforming of methane[J]. Microporous Mesoporous Mat,2021,310:110616. doi: 10.1016/j.micromeso.2020.110616
    [27] XU L, ZHAO H, SONG H, et al. Ordered mesoporous alumina supported nickel based catalysts for carbon dioxide reforming of methane[J]. Int J Hydrog Energy,2012,37(9):7497−7511. doi: 10.1016/j.ijhydene.2012.01.105
    [28] HORIUCHI T, SAKUMA K, FUKUI T, et al. Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst[J]. Appl Catal A-Gen,1996,144(1-2):111−120. doi: 10.1016/0926-860X(96)00100-7
    [29] LU Y, KANG L, GUO D, et al. Double-Site Doping of a V Promoter on Nix-V-MgAl Catalysts for the DRM Reaction: Simultaneous Effect on CH4 and CO2 Activation[J]. ACS Catal,2021,11(14):8749−8765. doi: 10.1021/acscatal.1c01299
    [30] OLSBYE U, WURZEL T, MLECZKO L. Kinetic and Reaction Engineering Studies of Dry Reforming of Methane over a Ni/La/Al2O3 Catalyst[J]. Ind Eng Chem Res,1997,36(12):5180−5188. doi: 10.1021/ie970246l
    [31] MA Q, HAN Y, WEI Q, et al. Stabilizing Ni on bimodal mesoporous-macroporous alumina with enhanced coke tolerance in dry reforming of methane to syngas[J]. J CO2 Util,2020,35:288−297. doi: 10.1016/j.jcou.2019.10.010
    [32] BARROSO-QUIROGA M M, CASTRO-LUNA A E. Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane[J]. Int J Hydrog Energy,2010,35(11):6052−6056. doi: 10.1016/j.ijhydene.2009.12.073
    [33] ARBAG H, YASYERLI S, YASYERLI N, et al. Coke Minimization in Dry Reforming of Methane by Ni Based Mesoporous Alumina Catalysts Synthesized Following Different Routes: Effects of W and Mg[J]. Top Catal,2013,56(18-20):1695−1707. doi: 10.1007/s11244-013-0105-3
    [34] FENG J, DING Y, GUO Y, et al. Calcination temperature effect on the adsorption and hydrogenated dissociation of CO2 over the NiO/MgO catalyst[J]. Fuel,2013,109:110−115. doi: 10.1016/j.fuel.2012.08.028
    [35] CASTRO LUNA A E, IRIARTE M E. Carbon dioxide reforming of methane over a metal modified Ni-Al2O3 catalyst[J]. Appl Catal A-Gen,2008,343(1-2):10−15. doi: 10.1016/j.apcata.2007.11.041
    [36] DÜDDER H, KäHLER K, KRAUSE B, et al. The role of carbonaceous deposits in the activity and stability of Ni-based catalysts applied in the dry reforming of methane[J]. Catal Sci Technol,2014,4(9):3317−3328. doi: 10.1039/C4CY00409D
    [37] LI L, ANJUM D H, ZHU H, et al. Synergetic Effects Leading to Coke-Resistant NiCo Bimetallic Catalysts for Dry Reforming of Methane[J]. ChemCatChem,2015,7(3):427−433. doi: 10.1002/cctc.201402921
    [38] GARCÍA-DIÉGUEZ M, HERRERA C, LARRUBIA M Á, et al. CO2-reforming of natural gas components over a highly stable and selective NiMg/Al2O3 nanocatalyst[J]. Catal Today,2012,197(1):50−57. doi: 10.1016/j.cattod.2012.06.019
    [39] 张荣俊, 夏国富, 李明丰, 等. 载体类型对Ni基催化剂甲烷干重整反应性能的影响[J]. 燃料化学学报(中英文),2015,43(11):1359−1365. doi: 10.1016/S1872-5813(15)30040-2

    ZHANG Rong-jun, XIA Guo-fu, LI Ming-feng, WU Yu, NIE Hong, LI Da-dong. Effect of support on catalytic performance of Ni-based catayst in methane dry reforming[J]. J Fuel Chem Technol.,2015,43(11):1359−1365. doi: 10.1016/S1872-5813(15)30040-2
    [40] SHEN J, REULE A A, SEMAGINA N. Ni/MgAl2O4 catalyst for low-temperature oxidative dry methane reforming with CO2[J]. Int J Hydrog Energy,2019,44(10):4616−4629. doi: 10.1016/j.ijhydene.2019.01.027
    [41] KARAM L, ARMANDI M, CASALE S, et al. Comprehensive study on the effect of magnesium loading over nickel-ordered mesoporous alumina for dry reforming of methane[J]. Energy Conv Manag,2020,225:113470. doi: 10.1016/j.enconman.2020.113470
    [42] DAS S, THAKUR S, BAG A, et al. Support interaction of Ni nanocluster based catalysts applied in CO2 reforming[J]. J Catal,2015,330:46−60. doi: 10.1016/j.jcat.2015.06.010
    [43] ZHAO Y-H, GENG J-T, ZHU H-D, et al. Ordered mesoporous Ni–Mg–Al2O3 as an effective catalyst for CO2 reforming of CH4[J]. Int J Hydrog Energy,2023,48(20):7192−7201. doi: 10.1016/j.ijhydene.2022.11.205
    [44] LU J, ZHANG Y, JIAO C, et al. Effect of reduction–oxidation treatment on structure and catalytic properties of ordered mesoporous Cu–Mg–Al composite oxides[J]. Sci Bull,2015,60(12):1108−1113. doi: 10.1007/s11434-015-0805-0
    [45] ATANDA L, FRAGA G L L, AHMED M H M, et al. Conversion of agricultural waste into stable biocrude using spinel oxide catalysts[J]. J Hazard Mater,2021,402:123539. doi: 10.1016/j.jhazmat.2020.123539
    [46] REZAEI M, ALAVI S M. Dry reforming over mesoporous nanocrystalline 5% Ni/M-MgAl2O4 (M: CeO2, ZrO2, La2O3) catalysts[J]. Int J Hydrog Energy,2019,44(31):16516−16525. doi: 10.1016/j.ijhydene.2019.04.213
    [47] LIU J, YU J, SU F, et al. Intercorrelation of structure and performance of Ni–Mg/Al2O3 catalysts prepared with different methods for syngas methanation[J]. Catal Sci Technol,2014,4(2):472−481. doi: 10.1039/C3CY00601H
    [48] 徐军科, 任克威, 周伟, 等. 制备方法对甲烷干重整催化剂Ni/La2O3/Al2O3结构及性能的影响[J]. 燃料化学学报(中英文),2009,37(4):473−479.

    XU Jun-ke, REN Ke-wei, ZHOU Wei, et al. Influence of preparation method on the properties and catalytic performance of Ni/La2O3/Al2O3 catalyst for dry reforming of methane[J]. J Fuel Chem Technol.,2009,37(4):473−479.
    [49] YUAN Q, YIN A-X, LUO C, et al. Facile synthesis for ordered mesoporous gamma-aluminas with high thermal stability[J]. J Am Chem Soc,2008,130(11):3465−3472. doi: 10.1021/ja0764308
    [50] HAMBALI H U, JALIL A A, ABDULRASHEED A A, et al. Effect of Ni-Ta ratio on the catalytic selectivity of fibrous Ni-Ta/ZSM-5 for dry reforming of methane[J]. Chem Eng Sci,2020,227:115952. doi: 10.1016/j.ces.2020.115952
    [51] LIU Z, ZHOU J, CAO K, et al. Highly dispersed nickel loaded on mesoporous silica: One-spot synthesis strategy and high performance as catalysts for methane reforming with carbon dioxide[J]. Appl Catal B-Environ,2012,125:324−330. doi: 10.1016/j.apcatb.2012.06.003
    [52] ODEDAIRO T, CHEN J, ZHU Z. Metal–support interface of a novel Ni–CeO2 catalyst for dry reforming of methane[J]. Catal Commun,2013,31:25−31. doi: 10.1016/j.catcom.2012.11.008
    [53] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem,2015,87(9-10):1051−1069. doi: 10.1515/pac-2014-1117
    [54] LI B, YUAN X, LI L, et al. Lanthanide oxide modified nickel supported on mesoporous silica catalysts for dry reforming of methane[J]. Int J Hydrog Energy,2021,46(62):31608−31622. doi: 10.1016/j.ijhydene.2021.07.056
    [55] BIAN Z, ZHONG W, YU Y, et al. Dry reforming of methane on Ni/mesoporous-Al2O3 catalysts: Effect of calcination temperature[J]. Int J Hydrog Energy,2021,46(60):31041−31053. doi: 10.1016/j.ijhydene.2020.12.064
    [56] YUAN X, LI B, WANG X, et al. Synthesis gas production by dry reforming of methane over Neodymium-modified hydrotalcite-derived nickel catalysts[J]. Fuel Process Technol,2022,227:107104. doi: 10.1016/j.fuproc.2021.107104
    [57] TAN P, GAO Z, SHEN C, et al. Ni-Mg-Al solid basic layered double oxide catalysts prepared using surfactant-assisted coprecipitation method for CO2 reforming of CH4[J]. Chin J Catal,2014,35(12):1955−1971. doi: 10.1016/S1872-2067(14)60171-6
    [58] GUO J, LOU H, ZHAO H, et al. Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels[J]. Appl Catal A-Gen,2004,273(1-2):75−82. doi: 10.1016/j.apcata.2004.06.014
    [59] DAMYANOVA S, PAWELEC B, ARISHTIROVA K, et al. Ni-based catalysts for reforming of methane with CO2[J]. Int J Hydrog Energy,2012,37(21):15966−15975. doi: 10.1016/j.ijhydene.2012.08.056
    [60] LU X, GU F, LIU Q, et al. VOx promoted Ni catalysts supported on the modified bentonite for CO and CO2 methanation[J]. Fuel Process Technol,2015,135:34−46. doi: 10.1016/j.fuproc.2014.10.009
    [61] AGHAALI M H, FIROOZI S. Enhancing the catalytic performance of Co substituted NiAl2O4 spinel by ultrasonic spray pyrolysis method for steam and dry reforming of methane[J]. Int J Hydrog Energy,2021,46(1):357−373. doi: 10.1016/j.ijhydene.2020.09.157
    [62] DUAN X, WEN Z, ZHAO Y, et al. Intercalation of nanostructured CeO2 in MgAl2O4 spinel illustrates the critical interaction between metal oxides and oxides[J]. Nanoscale,2018,10(7):3331−3341. doi: 10.1039/C7NR07825K
    [63] JIANG F, WANG S, LIU B, et al. Insights into the Influence of CeO2 Crystal Facet on CO2 Hydrogenation to Methanol over Pd/CeO2 Catalysts[J]. ACS Catal,2020,10(19):11493−11509. doi: 10.1021/acscatal.0c03324
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  30
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-10
  • 修回日期:  2023-07-29
  • 录用日期:  2023-07-31
  • 网络出版日期:  2023-09-01

目录

    /

    返回文章
    返回