留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽光谱响应范围的氮化碳纳米片的制备及其光催化产氢性能研究

郭桂珍 姚陈忠 孙友谊 辛德华 吕宝华

郭桂珍, 姚陈忠, 孙友谊, 辛德华, 吕宝华. 宽光谱响应范围的氮化碳纳米片的制备及其光催化产氢性能研究[J]. 燃料化学学报(中英文), 2024, 52(2): 277-284. doi: 10.19906/j.cnki.JFCT.2023065
引用本文: 郭桂珍, 姚陈忠, 孙友谊, 辛德华, 吕宝华. 宽光谱响应范围的氮化碳纳米片的制备及其光催化产氢性能研究[J]. 燃料化学学报(中英文), 2024, 52(2): 277-284. doi: 10.19906/j.cnki.JFCT.2023065
GUO Guizhen, YAO Chenzhong, SUN Youyi, XIN Dehua, LÜ Baohua. Preparation of carbon nitride nanosheets with wide spectral response range and photocatalytic hydrogen production properties[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 277-284. doi: 10.19906/j.cnki.JFCT.2023065
Citation: GUO Guizhen, YAO Chenzhong, SUN Youyi, XIN Dehua, LÜ Baohua. Preparation of carbon nitride nanosheets with wide spectral response range and photocatalytic hydrogen production properties[J]. Journal of Fuel Chemistry and Technology, 2024, 52(2): 277-284. doi: 10.19906/j.cnki.JFCT.2023065

宽光谱响应范围的氮化碳纳米片的制备及其光催化产氢性能研究

doi: 10.19906/j.cnki.JFCT.2023065
基金项目: 山西省教育厅项目 (2020L0566) 和运城学院博士科研启动项目 (YQ2022008) 资助
详细信息
    通讯作者:

    E-mail: guoguizhen1986@163.com

  • 中图分类号: TB34

Preparation of carbon nitride nanosheets with wide spectral response range and photocatalytic hydrogen production properties

Funds: The project was supported by the General Program of Education Department of Shanxi Province (2020L0566) and the Doctoral research start project (YQ2022008).
  • 摘要: 以块体氮化碳 (CN) 为前驱物,采用氧化剥离制备氧化型氮化碳纳米片 (o-CN NSs),将o-CN NSs还原制得了还原型氮化碳纳米片 (r-CN NSs)。o-CN NSs和r-CN NSs厚度均约2 nm,且都保留了纯CN的庚嗪环骨架结构;相比于o-CN NSs,r-CN NSs具有更小的禁带宽度 (2.62 eV)、更宽的光响应范围 (485 nm) 和更高的产氢速率((1700 μmol/(g·h));r-CN NSs的光催化产氢速率是CN的8.5倍、o-CN NSs的2.1倍。经过20 h的循环测试,r-CN NSs的光催化产氢速率没有衰减,具备良好的光催化稳定性。实验和理论分析表明,r-CN NSs是边缘基团为氨基的纳米片结构,氨基的引入改善了纳米片的结晶性,提高了电子和空穴的分离效率、拓宽了纳米片的光响应范围,从而导致光催化性能增强。
  • FIG. 2934.  FIG. 2934.

    FIG. 2934.  FIG. 2934.

    图  1  (a) CN的SEM照片;(b) 块状CN的局部放大SEM照片;(c) o-CN NSs和 (d) r-CN NSs的SEM照片;(e) o-CN NSs和 (f) r-CN NSs的EDS谱图

    Figure  1  (a) SEM images of CN; (b) Amagnified SEM image of CN; SEM images of (c) o-CN NSs and (d) r-CN NSs; EDS spectras of (e) o-CN NSs and (f) r-CN NSs

    图  2  (a) o-CN NSs和 (b) r-CN NSs的TEM照片;(c) o-CN NSs 和 (d) r-CN NSs的AFM照片

    Figure  2  TEM images of (a) o-CN NSs and (b) r-CN NSs, AFM images of (c) o-CN NSs and (d) r-CN NSs (Inset: height plot along the red line)

    图  3  CN、o-CN NSs及r-CN NSs的 (a) XRD谱图和 (b) FT-IR光谱谱图

    Figure  3  (a) XRD patterns and (b) FT-IR spectra of CN, o-CN NSs and r-CN NSs

    图  4  CN、o-CN NSs和r-CN NSs的结构示意图

    Figure  4  Schematic diagram of the structures of CN, o-CN NSs and r-CN NSs

    图  5  (a) 光催化产氢时间曲线图;(b) 光催化产氢速率图;(c) r-CN NSs光催化产氢稳定性测试;(d) r-CN NSs的光催化产氢在有光和无光环境中测试

    Figure  5  (a) Time course of photocatalytic H2 evolution; (b) Photocatalytic H2 evolution rates of obtained samples; (c) Photostability test of r-CN NSs for photocatalytic H2 evolution; (d) Photocatalytic H2 evolution of r-CN NSs was tested in light and without light

    图  6  CN、o-CN NSs和r-CN NSs的 (a) UV-vis光谱、(b) 能带曲线、(c) 光电流曲线和 (d) 阻抗谱

    Figure  6  (a) UV-vis absorption spectra, (b) Band gap curve, (c) Photocurrent measurements and (d) EIS spectra of CN, o-CN NSs and r-CN NSs

    表  1  单一氮化碳纳米片制备方法和性能对比

    Table  1  Comparison of preparation methods and properties of naked carbon nitride nanosheets

    No.Exfloiated strategies and
    preparation methods
    Thickness/
    nm
    Light source/nmBand gap/eVH2 evolution
    rates/(μmol·g–1·h–1)
    Ref.Year
    published
    1.Strong acid oxidation etching, then reduction24852.621700this work2024
    2.Physical grinding+Thermal oxidation etching6<4602.901254.75[15]2022
    3.Thermal oxidation etching4302.70495[16]2021
    4.Chemical exfoliation+Thermal oxidation etching0.8−1.44353.10115.5[18]2019
    5.High-temperature calcination in ammonia atmosphere4302.51<10[21]2022
    6.Ultrasound-assisted method4502.8620[31]2023
    7.Thermal oxidation etching<0.84402.67241.2[32]2021
    下载: 导出CSV
  • [1] SHIH C F, ZHANG T, LI J H, et al. Powering the future with liquid sunshine[J]. Joule,2018,2(10):1925−1949. doi: 10.1016/j.joule.2018.08.016
    [2] DALLE K E, WARNAN J, LEUNG J J, et al. Electro-and solar-driven fuel synthesis with first row transition metal complexes[J]. Chem Rev,2019,119(4):2752−2857. doi: 10.1021/acs.chemrev.8b00392
    [3] WEI J D, LUO D, SHI M M, et al. Ultrathin carbon nitride nanosheets exfoliated and In situ modified with a nickel bis (Chelate) complex for boosting photocatalytic performances[J]. Inorg Chem,2023,62(28):10973−10983. doi: 10.1021/acs.inorgchem.3c00952
    [4] VU N N, KALIAGUINE S, DO T O. Critical aspects and recent advances in structural engineering of photocatalysts for sunlight -driven photocatalytic reduction of CO2 into fuels[J]. Adv Funct Mater,2019,29(31):1901825. doi: 10.1002/adfm.201901825
    [5] SHARMA R, ALMASI M, NEHRA S P, et al. Photocatalytic hydrogen production using graphitic carbon nitride (GCN): A precise review[J]. Renewable Sustainable Energy Rev,2022,168:112776. doi: 10.1016/j.rser.2022.112776
    [6] LAM S S, NUYEN V H, DINH M T N, et al. Mainstream avenues for boosting graphitic carbon nitride efficiency: Towards enhanced solar light-driven photocatalytic hydrogen production and environmental remediation[J]. J Mater Chema,2020,8(21):10571−10603. doi: 10.1039/D0TA02582H
    [7] YUAN Y J, CHEN D Q, XIONG M, et al. Bandgap engineering of (AgIn)xZn2 (1–x) S2 quantum dot photosensitizers for photocatalytic H2 generation[J]. Appl Catal B: Environ,2017,204:58−66. doi: 10.1016/j.apcatb.2016.11.024
    [8] ZHANG P, GUAN B Y, YU L, et al. Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectron chemical performance for solar energy conversion[J]. Chem,2018,4(1):162−173. doi: 10.1016/j.chempr.2017.10.018
    [9] YANG B, LI X L, ZHANG Q, et al. Ultrathin porous carbon nitride nanosheets with well-tuned band structures via carbon vacancies and oxygen doping for significantly boosting H2 production[J]. Appl Catal B: Environ,2022,314:121521. doi: 10.1016/j.apcatb.2022.121521
    [10] 孙有为, 王曦, 周峰, 等. CoNi 双金属改性石墨相氮化碳的制备及光催化性能的研究[J]. 燃料化学学报,2022,50(11):1449−1457.

    SUN Youwei, WANG Xi, ZHOU Feng, et al. CoNi bimetallic co-catalyst decorated graphitic-phase carbon nitride preparation and photocatalytic properties[J]. J Fuel Chem Technol,2022,50(11):1449−1457.
    [11] JIANG W S, ZHAO Y J, ZONG X P, et al. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride[J]. Angew Chem Int Ed,2021,60(11):6124−6129. doi: 10.1002/anie.202015779
    [12] WANG Y Y, ZHANG X, DING X, et al. Enhanced thermal conductivity of carbon nitride-doped graphene/polyimide composite film via a “deciduous-like” strategy[J]. Compost Sci Technol,2021,205:108693. doi: 10.1016/j.compscitech.2021.108693
    [13] WU Y, XIONG P, WU J, et al. Band engineering and morphology control of oxygen-incorporated graphitic carbon nitride porous nanosheets for highly efficient photocatalytic hydrogen evolution[J]. Nano-micro Let,2021,13:47−59. doi: 10.1007/s40820-020-00572-5
    [14] YUAN Y J, SHEN Z K, WU S T, et al. Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity[J]. Appl Catal B: Environ,2019,246:120−128. doi: 10.1016/j.apcatb.2019.01.043
    [15] CHEN L, LIANG X, WANG H X, et al. Ultra-thin carbon nitride nanosheets for efficient photocatalytic hydrogen evolution[J]. Chem Eng J,2022,442:136115. doi: 10.1016/j.cej.2022.136115
    [16] MAHVELATI-SHAMSABADI T, FATTAHIMOGHADDAM H, LEE B K, et al. Caesium sites coordinated in Boron-doped porous and wrinkled graphitic carbon nitride nanosheets for efficient charge carrier separation and transfer: Photocatalytic H2 and H2O2 production[J]. Chem Eng J,2021,423:130067. doi: 10.1016/j.cej.2021.130067
    [17] REN Y M, YU C M, CHEN Z H, et al. Two-dimensional polymer nanosheets for efficient energy storage and conversion[J]. Nano Res,2021,14:2023−2036. doi: 10.1007/s12274-020-2976-5
    [18] GAO X C, FENG J, SU D W, et al. In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution[J]. Nano Energy,2019,59:598−609. doi: 10.1016/j.nanoen.2019.03.016
    [19] ZHOU X B, LI Y F, XING Y, et al. Effects of the preparation method of Pt/g-C3N4 photocatalysts on their efficiency for visible-light hydrogen production[J]. Dalton Trans,2019,48:15068−15073. doi: 10.1039/C9DT02938A
    [20] MALIK R, TOMER V K. State-of-the-art review of morphological advancements in graphitic carbon nitride (g-CN) for sustainable hydrogen production[J]. Renewable Sustainable Energy Rev,2021,135:1−14.
    [21] LIN Z, ZHANG Z Q, WANG Y Q, et al. Anchoring single nickel atoms on carbon-vacant carbon nitride nanosheets for efficient photocatalytic hydrogen evolution[J]. Chem Res Chin Univ,2022,38:1243−1250. doi: 10.1007/s40242-022-2194-7
    [22] OU H H, YANG P J, LIN L H, et al. Carbon nitride aerogels for the photoredox conversion of water[J]. Angew Chem Int Ed,2017,129(36):10905−10910.
    [23] YANG H, ZHOU Q, FANG Z Z, et al. Carbon nitride of five-membered rings with low optical bandgap for photoelectrochemical biosensing[J]. Chem,2021,7(10):2708−2721. doi: 10.1016/j.chempr.2021.06.010
    [24] NIU P, ZHANG L, LIU G, et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities[J]. Adv Funct Mater,2012,22(22):4763−4770. doi: 10.1002/adfm.201200922
    [25] LOTSCH B V, DOBLINGER M, SEHNERT J, et al. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer[J]. Chem-Eur J,2007,13(17):4969−4980. doi: 10.1002/chem.200601759
    [26] REDDY N R, BHARGAV U, KUMARI M M, et al. Review on the interface engineering in the carbonaceous titania for the improved photocatalytic hydrogen production[J]. Int J Hydrogen Energy,2020,45(13):7584−7615. doi: 10.1016/j.ijhydene.2019.09.041
    [27] VOIRY D, YANG J, KUPFERBERG J, et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science, 2016, 353(6306): 1413-1416.
    [28] LI D, MVLLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nanotechnol,2008,3(2):101−105. doi: 10.1038/nnano.2007.451
    [29] STANKOVICH S, DUKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558−1565. doi: 10.1016/j.carbon.2007.02.034
    [30] RAHMAN M Z, KIBRIA M G, MULLINS C B. Metal-free photocatalysts for hydrogen evolution[J]. Chem Soc Rev,2020,49(6):1887−1931. doi: 10.1039/C9CS00313D
    [31] WEI J D, ZHAO R Q, LUO D, et al. Atomically precise Ni6 (SC2H4Ph)12 nanoclusters on graphitic carbon nitride nanosheets for boosting photocatalytic hydrogen evolution[J]. J Colloid Interf Sci,2023,631:212−221. doi: 10.1016/j.jcis.2022.11.010
    [32] LUO L, GONG Z, MA J, et al. Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water[J]. Appl Catal B: Environ,2021,284:119742. doi: 10.1016/j.apcatb.2020.119742
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  90
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-20
  • 修回日期:  2023-08-01
  • 录用日期:  2023-08-14
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-02-02

目录

    /

    返回文章
    返回