留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤灰熔融特性与灰成分之间关系的矿物变化研究

王洋 李慧 王东旭 董长青 陆强 李文艳

王洋, 李慧, 王东旭, 董长青, 陆强, 李文艳. 煤灰熔融特性与灰成分之间关系的矿物变化研究[J]. 燃料化学学报, 2016, 44(9): 1034-1042.
引用本文: 王洋, 李慧, 王东旭, 董长青, 陆强, 李文艳. 煤灰熔融特性与灰成分之间关系的矿物变化研究[J]. 燃料化学学报, 2016, 44(9): 1034-1042.
WANG Yang, LI Hui, WANG Dong-xu, DONG Chang-qing, LU Qiang, LI Wen-yan. Relationship between coal ash fusibility and ash composition in terms of mineral changes[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1034-1042.
Citation: WANG Yang, LI Hui, WANG Dong-xu, DONG Chang-qing, LU Qiang, LI Wen-yan. Relationship between coal ash fusibility and ash composition in terms of mineral changes[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1034-1042.

煤灰熔融特性与灰成分之间关系的矿物变化研究

基金项目: 

国家自然科学基金 51276062

国家重点基础研究发展规划 973 program

国家重点基础研究发展规划 2015CB251501

中央高校基本科研业务费专项资金 2015ZZD02

详细信息
    通讯作者:

    董长青, E-mail: cqdong1@163.com

  • 中图分类号: TQ536.4

Relationship between coal ash fusibility and ash composition in terms of mineral changes

Funds: 

National Nature Science Foundation of China 51276062

the Major State Basic Research Development Program of China 973 program

the Major State Basic Research Development Program of China 2015CB251501

the Fundamental Research Funds for the Central Universities 2015ZZD02

  • 摘要: 通过在一种真实煤灰中添加不同的氧化物或直接用氧化物配制合成灰,探究了不同灰成分对灰熔融特性的影响规律。利用FactSage 7.0对不同灰分的熔融过程进行了热力学模拟,通过熔融过程中的矿物质变化为各种灰成分对熔融特性的影响规律提供理论依据。结果表明,氧化钠对灰熔点的降低作用源于钠长石和霞石对钙长石的取代;氧化镁含量的增加对灰熔点起先降低后升高的作用,当氧化镁含量超过一定时,产生的镁橄榄石能够升高灰熔点;硫对灰熔点的升高作用源于镁橄榄石和硫酸钙对透辉石的取代;氧化钙含量的增加对灰熔点起到先降低后升高的作用,当氧化钙含量超过一定时,硅从熔点较低的矿物质迁移到熔点较高的矿物质中,升高了灰熔点。在与硅氧单元体结合的过程中,氧化钠优先于氧化钙;与氧化钙和硅氧单元体结合的氧化物的优先级为:氧化铝>氧化镁>氧化铁。
  • 图  1  灰分1-7的熔融温度及变化趋势

    Figure  1.  AFTs of ash sample 1-7 and their changing tendency

    图  2  灰分1随温度升高过程中矿物质的变化

    ■: CaSO4; ○: NaAlSi3O8; △: KAlSi3O8; ▼: CaMgSi2O6; ◆: CaAlSi2O8; ◁: Fe2O3; ▶: Ca3Fe2Si3O12; ◇: slag

    Figure  2.  Mineral changes of ash 1 with the rising temperature

    图  3  灰分1随温度升高过程中液渣组成的变化

    Figure  3.  Slag composition changes of ash 1 with the rising temperature

    图  4  灰分3随温度升高过程中矿物质的变化

    ■: CaSO4; ○: NaAlSiO4; ●: NaAlSi3O8; ▲: KAlSi2O6; △: KAlSi3O8; ▼: CaMgSi2O6; ◆: CaAl2Si2O8; ◁: Fe2O3; ▶: Ca3Fe2Si3O12; ◇: slag

    Figure  4.  Mineral changes of ash 3 with the rising temperature

    图  5  900 ℃下灰分中矿物质随氧化钠含量增加的变化

    ■: CaSO4; □: SiO2; ○: NaAlSiO4; ●: NaAlSi3O8; ▲: KAlSi2O6; △: KAlSi3O8; ▼: CaMgSi2O6; ◆: CaAl2Si2O8; ◁: Fe2O3; ◇: Ca3Fe2Si3O12

    Figure  5.  Mineral changes with the increasing content of Na2O at 900 ℃

    图  6  灰分4随温度升高过程中矿物质的变化

    ■: CaSO4; □: Mg2SiO4; ○: NaAlSiO4; ●: NaAlSi3O8; ▲: KAlSi2O6; △: KAlSi3O8; ▼: CaMgSi2O6; ◆: CaAl2Si2O8; ◁: Fe2O3; ◇: slag

    Figure  6.  Mineral changes of ash 4 with the rising temperature

    图  7  900 ℃下灰分中矿物质随氧化镁含量增加的变化

    ■: CaSO4; ◇: Mg2SiO4; ○: NaAlSiO4; ●: NaAlSi3O8; ▲: KAlSi2O6; ▼: CaMgSi2O6; ◆: CaAl2Si2O8; ◁: Fe2O3; ▶: Ca3Fe2Si3O12

    Figure  7.  Mineral changes with the increasing content of MgO at 900 ℃

    图  8  灰分5矿物质随温度升高的变化

    ■: CaSO4; □: Mg2SiO4; ○: NaAlSiO4; ●: NaAlSi3O8; ▲: KAlSi2O6; △: KAlSi3O8; ▼: CaMgSi2O6; ◁: Fe2O3; ◆: CaAl2SiO8; ◇: slag

    Figure  8.  Mineral changes of ash 5 with the rising temperature

    图  9  900 ℃下灰分中矿物质随硫含量增加的变化

    ■: CaSO4; ◇: Mg2SiO4; ○: NaAlSiO4; ●: NaAlSi3O8; ▲: KAlSi2O6; ▼: CaMgSi2O6; ◆: CaAl2Si2O8; ◁: Fe2O3

    Figure  9.  Mineral changes with the increasing content of SO3 at 900 ℃

    图  10  灰分6矿物质随温度升高的变化

    ◇: K2SO4; ■: CaSO4; □: K2Ca2(SO4)3; ▲: Mg2SiO4; ○: NaAlSiO4; ▼: Na2Ca3Al16O28; ◄: Ca2MgSi2O7; ▶: Fe2O3; ●: Ca3FeSi3O12; ◆: slag

    Figure  10.  Mineral changes of ash 6 with the rising temperature

    图  11  灰分7矿物质随温度升高的变化

    □: K3Na (SO4)2; ■: Na2SO4; ◇: CaSO4; ○: K2Ca2(SO4)3; ●: MgO; △: CaO; ▲: Na2Ca8Al6O18; ◁: Ca2SiO4; ◄: Ca3SiO5; ▶: Ca3MgSi2O8; ▷: Ca2Fe2O5; ◆: slag

    Figure  11.  Mineral changes of ash 7 with the rising temperature

    表  1  准东煤的灰成分分析

    Table  1.   Ash composition of several Zhundong coals

    Coal Composition w/%
    SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 SO3
    Hubei Yihua 9.02 4.7 7.7 43.94 10.26 6.33 1.11 0.31 15.58
    Shenhua 26.97 7.72 7.66 22.86 9 3.91 0.51 0.43 20.15
    Tianchi energy 14.68 4.63 10.07 33.27 8.23 4.05 0.56 0.12 23.68
    Zhonglian coal 41.18 16.87 7.19 12.1 2.73 3.82 1.01 0.7 13.52
    Guoneng 49.44 13.26 8.14 8.54 7.07 5.06 1.49 0.92 5.38
    下载: 导出CSV

    表  2  实验所用真实煤灰和合成灰的灰成分分析

    Table  2.   Composition of the real coal ash and synthetic ashes in experiments

    Coal Composition w/%
    SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O SO3 others
    Ash 1 47.8 14.3 8.0 15.8 3.2 0.5 1.7 6.8 1.9
    Ash 2 53.2 16.5 5.4 10.6 2.1 3.1 3.0 4.5 1.6
    Ash 3 45.4 13.6 7.6 15.0 3.0 5.5 1.6 6.5 1.8
    Ash 4 42.6 12.8 7.0 14.1 9.0 5.2 1.5 6.1 1.7
    Ash 5 39.5 11.8 6.5 13.1 8.3 4.8 1.4 13.0 1.6
    Ash 6 30.3 9.1 6.5 25.0 8.3 4.8 1.4 13.0 1.6
    Ash 7 13.4 4.0 6.5 47.0 8.3 4.8 1.4 13.0 1.6
    Albite 64.03 20.94 0.06 0.15 0.02 8.35 5.51 0.01 0.93
    下载: 导出CSV
  • [1] CROMPTON P, WU Y R. Energy consumption in China: Past trends and future directions[J]. Energy Econ, 2005, 27(1): 195-208. doi: 10.1016/j.eneco.2004.10.006
    [2] CHEN W Y, XU R N. Clean coal technology development in China[J]. Energy Policy, 2010, 38(5): 2123-2130. doi: 10.1016/j.enpol.2009.06.003
    [3] AINETOM, ACOSTAA, RINCONJ M, ROMERO M.Thermal expansion of slag and fly ash from coal gasification in IGCC power plant[J]. Fuel, 2006, 85(16): 2352-2358. doi: 10.1016/j.fuel.2006.05.015
    [4] 张利孟, 董信光, 刘科, 谭厚章, 王学斌, 魏博.高岭土对准东煤结渣特性及矿物质演变的影响[J].燃料化学学报, 2015, 43(10): 1176-1181. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18706.shtml

    ZHANG Li-meng, DONG Xin-guang, LIU Ke, TAN Hou-zhang, WANG Xue-bin, WEI Bo.Effect of kaolin on ash slagging and mineral conversion of Zhundong coal[J]. J Fuel Chem Technol, 2015, 43(10): 1176-1181. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18706.shtml
    [5] 张杰, 冯玉朝, 张志辉.锅炉结渣原因分析及预防措施[J].锅炉技术, 2008, 39(5): 57-59. http://www.cnki.com.cn/Article/CJFDTOTAL-GYGL201001014.htm

    ZHANG Jie, FENG Yu-zhao, ZHANG Zhi-hui. Boiler slagging reason analysis and prevention measures[J]. Boiler Technol, 2008, 39(5): 57-59. http://www.cnki.com.cn/Article/CJFDTOTAL-GYGL201001014.htm
    [6] 宋文佳.高温煤气化炉中煤灰熔融, 流动和流变行为特性研究[D].上海:华东理工大学, 2011.

    SONG Wen-jia. Fusibility, flow characteristics and rheological properties of coal ash in the ultra-high temperature gasifier[D]. Shanghai: East China University Science and Technology, 2011.
    [7] 马岩, 黄镇宇, 唐慧儒, 王智化, 周俊虎, 岑可法.准东煤灰化过程中的矿物演变及矿物添加剂对其灰熔融特性的影响[J].燃料化学学报, 2014, 42(1): 20-25. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18327.shtml

    MA Yan, HUANG Zhen-yu, TANG Hui-ru, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Mineral conversion of Zhundong coal during ashing process and the effect of mineral additives on its ahs fusion characteristics[J]. J Fuel Chem Technol, 2014, 42(1): 20-25. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18327.shtml
    [8] SONG W J, TANG L H, ZHU X D, WU Y Q, RONG Y Q, ZHU Z B, KOYAMA S. Fusibility and flow properties of coal ash and slag[J]. Fuel, 2009, 88(2): 297-304. doi: 10.1016/j.fuel.2008.09.015
    [9] SONG W J, TANG L H, ZHU X D, WU Y Q, ZHU Z B, KOYAMA S. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy Fuels, 2009, 23(4): 1990-1997. doi: 10.1021/ef800974d
    [10] LIU B, HE Q H, JIANG Z H, XU R F, HU B X. Relationship between coal ash composition and ash fusion temperatures[J]. Fuel, 2013, 105: 293-300. doi: 10.1016/j.fuel.2012.06.046
    [11] SEGGIANI M. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J]. Fuel, 1999, 78(9): 1121-1125. doi: 10.1016/S0016-2361(99)00031-9
    [12] 王云刚, 赵钦新, 马海东, 姜薇薇.准东煤灰熔融特性试验研究[J].动力工程学报, 2013, 33(11): 841-846. http://www.cnki.com.cn/Article/CJFDTOTAL-DONG201311003.htm

    WANG Yun-gang, ZHAO Qin-xin, MA Hai-dong, JIANG Wei-wei. Experimental study on ash fusion characteristics of Zhundong coal[J]. J Chin Soc Power Eng, 2013, 33(11): 841-846. http://www.cnki.com.cn/Article/CJFDTOTAL-DONG201311003.htm
    [13] 杨光, 张彦威, 寇希文, 周志军, 王智化, 周俊虎, 岑可法.燃用准东煤电站锅炉灰沉积形成过程中的矿物演变与热力学模拟[J].燃料化学学报, 2015, 43(10): 1182-1187. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18707.shtml

    YANG Guang, ZHANG Yan-wei, KOU Xi-wen, ZHOU Zhi-jun, WANG Zhi-hua, ZHOU Jun-hu, CEN Ke-fa. Mineral conversion and thermodynamic simulation of ash deposition during Zhundong coal combustion in boiler of thermal power plant[J]. J Fuel Chem Technol, 2015, 43(10): 1182-1187. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18707.shtml
    [14] 马永静.矿物学角度研究添加剂对煤灰熔融性的作用及其机理[D].太原:太原理工大学, 2012.

    MA Yong-jing. Study the effect of addictives on the fusibility of coal ash and its mechanism from a mineralogical point of view[D]. Taiyuan: Taiyuan University of Technology, 2012.
    [15] 芦涛, 张雷, 张晔, 丰芸, 李含旭.煤灰中矿物质组成对煤灰熔融温度的影响[J].燃料化学学报, 2010, 38(1): 23-28. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17532.shtml

    LU Tao, ZHANG Lei, ZHANG Ye, FENG Yun, LI Han-xu. Effect of mineral composition on coal ash fusion temperature[J]. J Fuel Chem Technol, 2010, 38(1): 23-28. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract17532.shtml
    [16] LI F, QIU J R, ZHENG C G, HU Y. The fusion characteristics and mineral species of blended coal ash[J]. J Eng Thermophys, 1998, 19: 112-116.
    [17] WANG Y, XIANG Y, WANG D X, DONG C Q, YANG Y P, XIAO X B, LU Q, ZHAO Y. Effect of sodium oxides in ash composition on ash fusibility[J]. Energy Fuels, 2016, 30(2): 1437-1444. https://www.researchgate.net/publication/292072975_Effect_of_Sodium_Oxides_in_Ash_Composition_on_Ash_Fusibility
    [18] 陈晓东, 孔令学, 白进, 白宗庆, 李文.高温气化条件下Na2O对煤灰中矿物质演化行为的影响[J].燃料化学学报, 2016, 44(3): 263-272. doi: 10.1016/S1872-5813(16)30015-9

    CHEN Xiao-dong, KONG Ling-xue, BAI Jin, BAI Zong-qing, LI Wen. Effect of Na2O on mineral transformation of coal ash under high temperature gasification condition[J]. J Fuel Chem Technol, 2016, 44(3): 263-272. doi: 10.1016/S1872-5813(16)30015-9
    [19] 高峰, 马永静. Mg2+和Na+对高熔点煤灰熔融性的影响[J].燃料化学学报, 2012, 40(10): 1161-1166. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18038.shtml

    GAO Feng, MA Yong-jing.Study on the effect of Mg2+ and Na+ on the fusibility of coal ash with high ash fusion point[J]. J Fuel Chem Technol, 2012, 40(10): 1161-1166. http://rlhxxb.sxicc.ac.cn/CN/abstract/abstract18038.shtml
    [20] SONG W J, TANG L H, ZHU X D, WU Y Q, ZHU Z B, KOYAMA S. Effect of coal ash composition on ash fusion temperatures[J]. Energy Fuels, 2009, 24(1): 182-189. https://www.researchgate.net/publication/231274320_Effect_of_Coal_Ash_Composition_on_Ash_Fusion_Temperatures
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-15
  • 修回日期:  2016-06-05
  • 网络出版日期:  2021-01-23
  • 刊出日期:  2016-09-10

目录

    /

    返回文章
    返回