留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co-Ni-B/SBA-15催化1-辛烯氢甲酰化活性研究

郭靖 范素兵 高新华 马清祥 张建利 赵天生

郭靖, 范素兵, 高新华, 马清祥, 张建利, 赵天生. Co-Ni-B/SBA-15催化1-辛烯氢甲酰化活性研究[J]. 燃料化学学报.
引用本文: 郭靖, 范素兵, 高新华, 马清祥, 张建利, 赵天生. Co-Ni-B/SBA-15催化1-辛烯氢甲酰化活性研究[J]. 燃料化学学报.
GUO Jing, Fan Subing, Gao Xinhua, Ma Qingxiang, Zhang Jianli, ZHAO Tian-Sheng. Study on catalytic performance of Co-Ni-B/SBA-15 for hydroformylation of 1-octene[J]. Journal of Fuel Chemistry and Technology.
Citation: GUO Jing, Fan Subing, Gao Xinhua, Ma Qingxiang, Zhang Jianli, ZHAO Tian-Sheng. Study on catalytic performance of Co-Ni-B/SBA-15 for hydroformylation of 1-octene[J]. Journal of Fuel Chemistry and Technology.

Co-Ni-B/SBA-15催化1-辛烯氢甲酰化活性研究

基金项目: 宁夏重点研发计划东西部合作项目(2017BY063)资助
详细信息
    作者简介:

    郭靖(1984-),女,博士研究生,研究方向:高碳烯烃氢甲酰化。E-mail:guojingsn@163.com

    通讯作者:

    赵天生,男,教授,研究方向:应用催化。E-mail:zhaots@nxu.edu.cn。省部共建煤炭高效利用与绿色化工国家重点实验室 宁夏大学 银川市贺兰山西路489号 电话:0951-2062237 邮编:750021

  • 中图分类号: O643.3

Study on catalytic performance of Co-Ni-B/SBA-15 for hydroformylation of 1-octene

Funds: Supported by The East-West Cooperation Project, Key R & D Plan of Nignxia (2017BY063)
More Information
  • 摘要: 超声辅助浸渍法制备了SBA-15分子筛负载三组分非晶态Co-Ni-B,研究了其对1-辛烯氢甲酰化制壬醛反应的催化性能。SBA-15负载纳米非晶态Co-Ni-B,增加了Co-Ni-B的分散;且非晶态Co-Ni-B转化为晶体的温度升高约280 ℃,耐热稳定性增强。Co-Ni-B/SBA-15催化剂,其中Co(wt.) = 17.22%,n(Ni)/n(Co) = 0.157,n(B)/n(Co + Ni) = 0.434,用于120 ℃、5 MPa条件下氢甲酰化反应,间歇反应4 h,1-辛烯完全转化,壬醛选择性91.24%;相比Co-Ni-B,副产物减少1倍。催化剂重复使用5次,活性稳定。
  • 图  1  催化剂的XRD谱图

    Figure  1.  XRD patterns of catalysts

    图  2  催化剂的N2吸附-脱附等温曲线和孔分布

    Figure  2.  N2 adsorption isotherms and pore distribution of catalysts

    图  3  催化剂的TEM、SAED图和元素映射图(Co-Ni-B/SBA-15)

    Figure  3.  TEM/SAED images of catalysts and elemental mapping of Co-Ni-B/SBA-15

    图  4  催化剂的XPS谱图

    Figure  4.  XPS spectra of catalysts

    图  5  Co-Ni-B和Co-Ni-B/SBA-15的差示扫描量热图谱

    Figure  5.  DSC profiles of Co-Ni-B and Co-Ni-B/SBA-15

    图  6  焙烧Co-Ni-B/SBA-15催化剂的XRD谱图

    Figure  6.  XRD patterns of calcined Co-Ni-B/SBA-15

    图  7  Co-Ni-B/SBA-15重复使用5次后XRD图

    Figure  7.  XRD patterns of Co-Ni-B/SBA-15 after 5 repetition use

    图  8  Co-Ni-B/SBA-15的可重复使用性

    Figure  8.  Repeatability of Co-Ni-B/SBA-15

    表  1  催化剂的织构性质

    Table  1.   Textural properties of catalysts

    CatalystsReal bulk (w %)Real loading (w %)ABET(m2·g−1)Vpore (cm3·g−1)Dpore (nm)
    CoNiB
    SBA-157131.037.8
    Co-Ni-B63.5210.747.2522.90.1526.6
    Co-Ni-B/SBA-1517.222.691.5921.505390.646.8
    Co-B/SBA-1515.991.2817.274530.496.6
    Ni-B/SBA-1519.031.6520.684130.577.3
    下载: 导出CSV

    表  2  1-辛烯氢甲酰化催化活性

    Table  2.   Catalytic activity for hydroformylation of 1-octene

    CatalystsCo/1-octene(molar ratio)x (%)Product s (%)Aldehydeyield (%)n/iTON
    nonanalisononanalisomersothers
    Co-Ni-B/SBA-150.01810054.8936.358.290.4791.241.5155.5
    Co-B/SBA-150.01910050.6434.3010.025.0484.941.4852.3
    Ni-B/SBA-155.8127.6311.5146.2814.582.272.403.3
    Co-Ni-B0.05594.6349.4832.9917.53078.041.5917.3
    Cat. 0.25 g, toluene 13 g, 1-octene 3.57 g, 120 ℃, 5 MPa, 1200 rpm, 4 h
    下载: 导出CSV

    表  3  焙烧对催化活性影响

    Table  3.   Effect of calcination on catalytic activity

    Calc. t(℃)x (%)Product s (%)Aldehydeyield (%)n/iTON
    nonanalisononanalisomersothers
    uncalcined10054.8936.358.290.4791.241.5155.5
    30010047.4931.8512.598.0779.341.4955.1
    40097.1549.8630.4917.082.5778.061.5953.2
    50092.6736.5424.0316.9722.4656.131.5250.7
    60024.6235.0321.2318.6125.1313.851.6513.5
    Co-Ni-B/SBA-15 0.25 g, toluene 13 g, 1-octene 3.57 g, 120 ℃, 5 MPa, 1200 rpm, 4 h
    下载: 导出CSV
  • [1] 姜淼, 杜虹, 王国庆, 严丽, 丁云杰. Co-PPh3 @ POPs多相催化剂氢甲酰化反应研究[J]. 煤炭学报,2020,45(4):1250−1258.

    JIANG Miao, DU Hong, WANG Guo-qing, YAN Li, DING Yun-jie. Co-PPh3 @ POPs heterogeneous catalysts for hydroformylation of olefins[J]. J China Coal Soci,2020,45(4):1250−1258.
    [2] SUDHEESH N, SHARMA S K, SHUKLA R S, JASRA R V. HRh(CO)(PPh3)3 encapsulated mesopores of hexagonal mesoporous silica (HMS) acting as nanophase reactors for effective catalytic hydroformylation of olefins[J]. J Mol Catal A: Chem,2008,296(1-2):61−70. doi: 10.1016/j.molcata.2008.08.019
    [3] LIU Y, LI Z H, WANG B, ZHANG Y. A fine dispersed cobalt catalyst with macro-pore for hydroformylation of 1-hexene[J]. Catal Lett,2016,146(11):2252−2260. doi: 10.1007/s10562-016-1853-z
    [4] TAN M H, YANG G H, WANG T J, VITIDSANT T, LI J, WEI Q H, AI P P, WU M B, ZHENG J T, TSUBAKI N. Active and regioselective rhodium catalyst supported on reduced graphene oxide for 1-hexene hydroformylation[J]. Catal Sci Technol,2016,6(4):1162−1172. doi: 10.1039/C5CY01355K
    [5] LI C Y, SUN K J, WANG W L, YAN L, SUN X P, WANG Y Q, XIONG K, ZHAN Z P, JIANG Z, DING Y J. Xantphos doped Rh/POPs-PPh3 catalyst for highly selective long-chain olefins hydroformylation: Chemical and DFT insights into Rh location and the roles of Xantphos and PPh3[J]. J Catal,2017,353:123−132. doi: 10.1016/j.jcat.2017.07.022
    [6] 吴丹, 周聪, 赵素英. 负载型烯烃氢甲酰化反应催化剂研究进展[J]. 化工进展,2019,38(10):4542−4553.

    WU D, ZHOU C, ZHAO S Y. Research progress of immobilized catalysts for olefin hydroformylation[J]. Chem Ind Eng Prog,2019,38(10):4542−4553.
    [7] SONG X, DING Y, CHEN W, DONG W, PEI Y, ZANG J, YAN L, LU Y. Formation of 3-pentanone via ethylene hydroformylation over Co/activated carbon catalyst[J]. Appl Catal A: Gen,2013,452:155−162. doi: 10.1016/j.apcata.2012.11.006
    [8] QIU X, TSUBAKI N, FUJIMOTO K. Hydroformylation of 1-hexene over Co/SiO2 catalysts: influence of pore size of support[J]. J Chem Eng Jpn,2001,34(11):1366−1372. doi: 10.1252/jcej.34.1366
    [9] ZHANG J, SUN P, GAO G, WANG J, ZHAO Z L, MUHAMMAD Y, LI F W. Enhancing regioselectivity via tuning the microenvironment in heterogeneous hydroformylation of olefins[J]. J Catal,2020,387:196−206. doi: 10.1016/j.jcat.2020.03.032
    [10] EPHRAIM V, PHENDUKANI N, KALALA J, REINOUT M. Confinement effect of rhodium (I) complex species on mesoporous MCM-41 and SBA-15: effect of pore size on the hydroformylation of 1-octene[J]. J Porous Mat,2017,25(1):303−320.
    [11] MARRAS F, WANG J, COPPENS M O, REEK J N H. Ordered mesoporous materials as solid supports for rhodium-diphosphine catalysts with remarkable hydroformylation activity[J]. Chem Commun,2010,46(35):6587−6589. doi: 10.1039/c0cc00924e
    [12] LI C Y, XIONG K, YAN L, JIANG M, SONG X G, WANG T, CHEN X K, ZHAN Z P, DING Y J. Designing highly efficient Rh/CPOL-bp& PPh3 heterogenous catalysts for hydroformylation of internal and terminal olefins[J]. Catal Sci Technol,2016,6(7):2143−2149. doi: 10.1039/C5CY01655J
    [13] LANG R, LI T, MATSUMURA D, MIAO S, REN Y J, CUI Y T, TAN Y, QIAO B T, LI L, WANG A Q, WANG X D, ZHANG T. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3[J]. Angew Chem Int Edit,2016,55(52):16054−16058. doi: 10.1002/anie.201607885
    [14] WANG L B, ZHANG W B, WANG S P, GAO Z H, LUO Z H, WANG X, ZENG R, LI A W, LI H L, WANG M L, ZHENG X S, ZHU J F, ZHANG W H, MA C, SI R, ZENG J. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst[J]. Nat commun,2016,7:14036. doi: 10.1038/ncomms14036
    [15] MA L, PENG Q R, HE D H. Catalytic behaviors of amorphous Co-B catalysts in hydroformylation of 1-octene[J]. Catal Lett,2009,130(1-2):137−146. doi: 10.1007/s10562-009-9839-8
    [16] 李金金, 马兰, 贺德华, 李光兴. 非晶态Co-P-B催化剂在1-辛烯氢甲酰化反应中的应用[J]. 高等学校化学学报,2011,32(12):2844−2848.

    LI Jin-jin, MA Lan, HE De-hua, LI Guang-xing. Hydroformylation of 1-octene over amorphous Co-P-B catalysts[J]. Chem J Chin Univ,2011,32(12):2844−2848.
    [17] SHI Y K, HU X J, ZHU B L, ZHANG S M, HUANG W P. Hydroformylation of 1-octene over nanotubular TiO2-supported amorphous Co-B catalysts[J]. Chem Res Chin Univ,2015,31(5):851−857. doi: 10.1007/s40242-015-5002-9
    [18] LUO H S, LI H X, ZHUANG L. Furfural hydrogenation to furfuryl alcohol over a novel Ni-Co-B amorphous alloy catalyst[J]. Chem Lett,2001,30(5):404−405. doi: 10.1246/cl.2001.404
    [19] 程庆彦, 刘栋杰, 王明明, 王延吉. Ni-Co-P非晶态合金催化香草醛HDO性能的研究[J]. 燃料化学学报,2019,47(10):1205−1213. doi: 10.3969/j.issn.0253-2409.2019.10.007

    CHENG Qing-yan, LIU Dong-jie, WANG Ming-ming, WANG Yan-ji. Study on catalytic performance of Ni-Co-P amorphous alloy for HDO of vanillin[J]. J Fuel Chem Technol,2019,47(10):1205−1213. doi: 10.3969/j.issn.0253-2409.2019.10.007
    [20] WANG C, LIM S Y, DU G, LOEBICKI C Z, LI N, DERROUICHE S, HALLER G L. Synthesis, characterization, and catalytic performance of highly dispersed Co-SBA-15[J]. J Phys Chem C,2009,113(33):14863−14871. doi: 10.1021/jp901823v
    [21] WEI W, ZHAO Y, PENG S C, ZHANG H Y, BIAN Y P, LI H X, LI H. Hollow Ni-Co-B amorphous alloy nanospheres: facile fabrication via vesicle-assisted chemical reduction and their enhanced catalytic performances[J]. J Mater Chem A,2014,2(45):19253−19259. doi: 10.1039/C4TA04533E
    [22] ZHAO J J, MALGRAS V, NA J, LIANG R, CAI Y, KANG Y Q, ALSHEHRI A A, ALZAHRANI K A, ALGHAMDI Y G, ASAHI T, ZHANG D Q, JIANG B, LI H X, YAMAUCHI Y. Magnetically induced synthesis of mesoporous amorphous CoB nanochains for efficient selective hydrogenation of cinnamaldehyde to cinnamyl alcohol[J]. Chem Eng J,2020,:125564.
    [23] KANG Y Q, HENZIE J, GU H J, NA J, FATEHMULLA A, SHAMSAN B S A, ALDHAFIRI A M, FAROOQ W A, BANDO Y, ASAHI T, JIANG B, LI H X, YAMAUCHI Y. Mesoporous metal-metalloid amorphous alloys: the first synthesis of open 3D mesoporous Ni-B amorphous alloy spheres via a dual chemical reduction method[J]. Small,2020,16(10):1906707. doi: 10.1002/smll.201906707
    [24] LI H, LI H X, DENG J F. Glucose hydrogenation over Ni-B/SiO2 amorphous alloy catalyst and the promoting effect of metal dopants[J]. Catal Today,2002,74(1-2):53−63. doi: 10.1016/S0920-5861(01)00530-2
    [25] CHEN X Y, WANG S, ZHUANG J H, QIAO M H, FAN K N, HE H Y. Mesoporous silica-supported Ni-B amorphous alloy catalysts for selective hydrogenation of 2-ethylanthraquinone[J]. J Catal,2004,227(2):419−427. doi: 10.1016/j.jcat.2004.08.002
    [26] SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUEROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl. Chem,1985,57(4):603−619. doi: 10.1351/pac198557040603
    [27] WANG W Y, YANG Y Q, LUO H A, PENG H Z, HE B, LIU W Y. Preparation of Ni(Co)–W–B amorphous catalysts for cyclopentanone hydrodeoxygenation[J]. Catal Commun,2011,12(14):1275−1279. doi: 10.1016/j.catcom.2011.04.027
    [28] WANG S, HE P, XIE Z W, JIA L P, HE M Q, ZHANG X Q, DONG F Q, LIU H H, ZHANG Y, LI C X. Tunable nanocotton-like amorphous ternary Ni-Co-B: A highly efficient catalyst for enhanced oxygen evolution reaction[J]. Electrochim Acta,2019,296:644−652. doi: 10.1016/j.electacta.2018.11.099
    [29] WANG Y Y, XIE C, ZHANG Z Y, LIU D D, CHEN R, WANG S Y. In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction[J]. Adv Funct Mater,2017,:1703363.
    [30] WANG L N, LI Z, ZHANG P P, WANG G X, XIE G W. Hydrogen generation from alkaline NaBH4 solution using Co-Ni-Mo-P/γ-Al2O3 catalysts[J]. Int J Hydrogen Energ,2016,:1468−1476.
    [31] WANG W Y, YANG S J, QIAO Z Q, LIU P L, WU K, YANG Y Q. Preparation of Ni-W-P-B amorphous catalyst for the hydrodeoxygenation of p-cresol[J]. Catal Commun,2015,60:50−54. doi: 10.1016/j.catcom.2014.11.023
    [32] ZHANG Z, LIU Y D, HUANG Z Y, REN L, QI X, WEI X L, ZHONG J X. Facile hydrothermal synthesis of NiMoO4 @CoMoO4 hierarchical nanospheres for supercapacitor applications[J]. Phys Chem Chem Phys,2015,17(32):20795−20804. doi: 10.1039/C5CP03331D
    [33] PATEL N, FERNANDES R, MIOTELLO A. Hydrogen generation by hydrolysis of NaBH4 with efficient Co-P-B catalyst: a kinetic study[J]. J Power Sources,2009,188(2):411−420. doi: 10.1016/j.jpowsour.2008.11.121
    [34] HU X J, SHI Y K, ZHANG Y J, ZHU B L, ZHANG S M, HUANG W P. Nanotubular TiO2-supported amorphous Co-B catalysts and their catalytic performances for hydroformylation of cyclohexene[J]. Catal Commun,2015,59:45−49. doi: 10.1016/j.catcom.2014.09.043
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-03-30

目录

    /

    返回文章
    返回