Volume 49 Issue 2
Feb.  2021
Turn off MathJax
Article Contents
SONG Ying-jian, CUI Xiao-jing, DENG Tian-sheng, QIN Zhang-feng, FAN Wei-bin. Solvent effect on the activity of Ru-Co3O4 catalyst for liquid-phase hydrogenation of CO2 into methane[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 178-185. doi: 10.1016/S1872-5813(21)60013-0
Citation: SONG Ying-jian, CUI Xiao-jing, DENG Tian-sheng, QIN Zhang-feng, FAN Wei-bin. Solvent effect on the activity of Ru-Co3O4 catalyst for liquid-phase hydrogenation of CO2 into methane[J]. Journal of Fuel Chemistry and Technology, 2021, 49(2): 178-185. doi: 10.1016/S1872-5813(21)60013-0

Solvent effect on the activity of Ru-Co3O4 catalyst for liquid-phase hydrogenation of CO2 into methane

doi: 10.1016/S1872-5813(21)60013-0
Funds:  The project was supported by National Natural Science Foundation of China (U1910203, 21972159)
  • Received Date: 2020-08-14
  • Rev Recd Date: 2020-11-02
  • Available Online: 2021-02-25
  • Publish Date: 2021-02-08
  • Ru-Co3O4 catalyst was prepared by the co-precipitation method. Its catalytic performance in liquid-phase hydrogenation of CO2 into methane was investigated, and compared with those of the conventional Ru-based catalysts (Ru/SiO2, Ru/CeO2, Ru/ZrO2, Ru/TiO2) prepared by impregnation method. The solvents including H2O, n-butanol, 1,4-butyrolactone, DMF, n-nonane, decalin, cyclohexane and isooctane had significant solvent effects on the catalytic performance. Compared with other solvents, the catalyst showed higher activity and selectivity catalytic performance when decalin and isooctane was applied as the solvent. At 200 °C and H2/CO2=3:1 (v/v, 4 MPa) and with decalin as the solvent, the conversion of CO2 and the selectivity of CH4 reached 45.6% and 97%, respectively. The isotope labeling experiments and in-situ diffuse reflectance infrared spectra showed that the hydrogen atoms of the tertiary carbon in decalin and isooctane were active for CO2 hydrogenation reaction, thus improving the catalytic activity.
  • loading
  • [1]
    DRESSELHAUS M S, THOMAS I L. Alternative energy technologies[J]. Nature,2001,414(6861):332−337. doi: 10.1038/35104599
    [2]
    SAKAKURA T, CHOI J-C, YASUDA H. Transformation of carbon dioxide[J]. Chem Rev,2007,107(6):2365−2387. doi: 10.1021/cr068357u
    [3]
    GOEPPERT A, CZAUN M, JONES J-P, PRAKASH G K S, OLAH G A. Recycling of carbon dioxide to methanol and derived products-closing the loop[J]. Chem Soc Rev,2014,43(23):7995−8048. doi: 10.1039/C4CS00122B
    [4]
    POROSOFF M D, YAN B, CHEN J G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities[J]. Energy Environ Sci,2016,9(1):62−73.
    [5]
    KONDRATENKO E V, MUL G, BALTRUSAITIS J, LARRAZABAL G O, PEREZ-RAMIREZ J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes[J]. Energy Environ Sci,2013,6(11):3112−3135.
    [6]
    HAVRAN V, DUDUKOVIC M P, LO C S. Conversion of methane and carbon dioxide to higher value products[J]. Ind Eng Chem Res,2011,50(12):7089−7100.
    [7]
    OLAJIRE A A. Recent progress on the nanoparticles-assisted greenhouse carbon dioxide conversion processes[J]. J CO2 Util,2018,24:522−547. doi: 10.1016/j.jcou.2018.02.012
    [8]
    BERTINI F, GLATZ M, GORGAS N, STOEGER B, PERUZZINI M, VEIROS L F, KIRCHNER K, GONSALVI L. Carbon dioxide hydrogenation catalysed by well-defined Mn(I) PNP pincer hydride complexes[J]. Chem Sci,2017,8(7):5024−5029. doi: 10.1039/C7SC00209B
    [9]
    GUNASEKAR G, PARK K, JEONG H, JUNG K-D, PARK K, YOON S. Molecular Rh(III) and Ir(III) catalysts immobilized on bipyridine-based covalent triazine frameworks for the hydrogenation of CO2 to formate[J]. Catalysts,2018,8(7):295. doi: 10.3390/catal8070295
    [10]
    SORDAKIS K, TSURUSAKI A, IGUCHI M, KAWANAMI H, HIMEDA Y, LAURENCZY G. Carbon dioxide to methanol: the aqueous catalytic way at room temperature[J]. Chem-Eur J,2016,22(44):15605−15608. doi: 10.1002/chem.201603407
    [11]
    DORNER R W, HARDY D R, WILLIAMS F W, DAVIS B H, WILLAUER H D. Influence of gas feed composition and pressure on the catalytic conversion of CO2 to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst[J]. Energy Fuels,2009,23(8):4190−4195. doi: 10.1021/ef900275m
    [12]
    VARGHESE J J, MUSHRIF S H. Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review[J]. React Chem Eng,2019,4(2):165−206. doi: 10.1039/C8RE00226F
    [13]
    HE Z, QIAN Q, MA J, MENG Q, ZHOU H, SONG J. Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions[J]. Angew Chem Int Ed,2016,55(2):737−741. doi: 10.1002/anie.201507585
    [14]
    FILONENKO G A, VRIJBURG W L, HENSEN E J M, PIDKO E A. On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates[J]. J Catal,2016,343:97−105. doi: 10.1016/j.jcat.2015.10.002
    [15]
    CHENG S, ZENG Y, PEI Y, FAN K, QIAO M, ZONG B. Synthesis and catalysis of Pt/W-s-SBA-15 catalysts with short channel for glycerol hydrogenolysis to 1, 3-propanediol[J]. Acta Chim Sin,2019,77(10):1054−1062. doi: 10.6023/A19060219
    [16]
    NIE R, LIANG D, SHEN L, GAO J, CHEN P, HOU Z. Selective oxidation of glycerol with oxygen in base-free solution over MWCNTs supported PtSb alloy nanoparticles[J]. Appl Catal B: Environ,2012,127(30):212−220. doi: 10.1016/j.apcatb.2012.08.026
    [17]
    CHARY K V R, NARESH D, VISHWANATHAN V, SADAKANE M, UEDA W. Vapour phase hydrogenation of phenol over Pd/C catalysts: A relationship between dispersion, metal area and hydrogenation activity[J]. Catal Commun,2007,8(3):471−477. doi: 10.1016/j.catcom.2006.07.017
    [18]
    SALAVATI-NIASARI M, DAVAR F, MAZAHERI M, SHATERIAN M. Preparation of cobalt nanoparticles from [bis(salicylidene)cobalt(II)]–oleylamine complex by thermal decomposition[J]. J Magn Magn Mater,2008,320(3/4):575−578.
    [19]
    SHEN X, GARCES L-J, DING Y, LAUBERNDS K, ZERGER R P, AINDOW M, NETH E J, SUIB S L. Behavior of H2 chemisorption on Ru/TiO2 surface and its application in evaluation of Ru particle sizes compared with TEM and XRD analyses[J]. Appl Catal A: Gen,2008,335(2):187−195. doi: 10.1016/j.apcata.2007.11.017
    [20]
    BERTERO N M, APESTEGUÍA C R, MARCHI A J. Catalytic and kinetic study of the liquid-phase hydrogenation of acetophenone over Cu/SiO2 catalyst[J]. Appl Catal A: Gen,2008,349(1/2):100−109. doi: 10.1016/j.apcata.2008.07.014
    [21]
    LIU X, ZHOU W, YANG Y, CHENG K, KANG J. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates[J]. Chem Sci,2018,9(20):4708−4718. doi: 10.1039/C8SC01597J
    [22]
    PRICE G L. Matrix Method for correction of mass spectra in deuterium-exchange applications[J]. Ind Eng Chem Res,1989,28(6):839−844. doi: 10.1021/ie00090a028
    [23]
    DAS T, DEO G. Synthesis, characterization and in situ DRIFTS during the CO2 hydrogenation reaction over supported cobalt catalysts[J]. J Mol Catal A: Chem,2011,350(1/2):75−82. doi: 10.1016/j.molcata.2011.09.008
    [24]
    HONG J, MARCEAU E, KHODAKOV A Y, GABEROVA L, GRIBOVAL-CONSTANT A, GIRARDON J-S, LA FONTAINE C, BRIOIS V. Speciation of ruthenium as a reduction promoter of silica-supported Co catalysts: A time-resolved in situ XAS investigation[J]. ACS Catal,2015,5(2):1273−1282. doi: 10.1021/cs501799p
    [25]
    BUSCA G, LORENZELLI V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal-oxide surfaces[J]. Mater Chem,1982,7(1):89−126. doi: 10.1016/0390-6035(82)90059-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (644) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return