Volume 49 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
JIA Meng-ting, GAO Shan-song, ZHANG Yan-jun, ZHANG De-xiang. Co-hydrogenation behavior of Hami coal with Tahe residue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 902-908. doi: 10.1016/S1872-5813(21)60037-3
Citation: JIA Meng-ting, GAO Shan-song, ZHANG Yan-jun, ZHANG De-xiang. Co-hydrogenation behavior of Hami coal with Tahe residue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 902-908. doi: 10.1016/S1872-5813(21)60037-3

Co-hydrogenation behavior of Hami coal with Tahe residue

doi: 10.1016/S1872-5813(21)60037-3
Funds:  The project was supported by the National Key Research and Development Program of China (2016YFB0600303)
  • Received Date: 2020-12-02
  • Rev Recd Date: 2021-01-14
  • Available Online: 2021-03-30
  • Publish Date: 2021-07-15
  • The hydrogenation and co-hydrogenation behaviors of Hami coal and Tahe residue were investigated in an autoclave, and the feasible technical route for co-hydrogenation was explored. The experimental results showed that Hami coal had good hydroliquefaction performance and the suitable reaction temperature was 445℃. At 445℃ and 9 MPa, the coal conversion rate reached 98.74%, and the oil yield reached 68.54%. The hydrogenation tests of Tahe residue showed obvious coking tendency at the lower temperature, and it was difficult to achieve lightening. At 430℃, the conversion rate of Tahe residue was only 66.38%, the light oil yield was only 50.01%, and its coking rate was as high as 9.45%. The coking rate increased with the reaction temperature. When the mixtures of Hami coal and Tahe residue were co-hydrogenated directly, the conversion rate of the raw materials was lower, and the coke phenomenon was obvious. At the coal/oil ratio was 40:60, the conversion rate was 97.79%, and oil yield was 73.36%. Adding hydrogen solvents into the co-hydrogenation system could effectively inhibit coke formation, increase the conversion rate, and lighten co-hydrogenation products. When the amount of coal was 45% and Tahe residue was 20%, the conversion rate of raw materials was 98.38% and the oil yield was 74.82%.
  • loading
  • [1]
    张生玲, 胡晓晓. 中国能源贸易形势与前景[J]. 国际贸易,2020,(9):22−30.

    ZHANG Sheng-ling, HU Xiao-xiao. The situation and prospect of China’s energy trade[J]. Intertrade,2020,(9):22−30.
    [2]
    宋官龙, 赵德智, 张志伟, 许茜. 渣油加氢工艺的现状及研究前景[J]. 石化技术,2017,24(7):1−3+7. doi: 10.3969/j.issn.1006-0235.2017.07.001

    SONG Guan-long, ZHAO De-zhi, ZHANG Zhi-wei, XU Qian. Current situation and research prospect of residue hydrogenation technology[J]. Petrochem Ind Technol,2017,24(7):1−3+7. doi: 10.3969/j.issn.1006-0235.2017.07.001
    [3]
    赵鹏. 新疆淖毛湖煤直接加氢液化特性的研究[J]. 煤炭科学技术,2019,47(7):244−248.

    ZHAO Peng. Study on direct hydrogenation liquefaction characteristics of Naomaohu coal in Xinjiang[J]. Coal Sci Technol,2019,47(7):244−248.
    [4]
    黄传峰, 李大鹏, 杨涛. 煤油共炼技术现状及研究趋势讨论[J]. 现代化工,2016,36(8):8−13.

    HUANG Chuan-feng, LI Da-peng, YANG Tao. Status and research trends of co-processing of coal and oil[J]. Mod Chem Ind,2016,36(8):8−13.
    [5]
    SHAN X, SHU G, LI K, ZHANG X, WANG H, CAO X, JIANG H, WENG H. Effect of hydrogenation of liquefied heavy oil on direct coal liquefaction[J]. Fuel,2017,194:291−296.
    [6]
    李丽, 李克健, 吴秀章. 煤与石油重油共处理协同效应的初步分析[J]. 神华科技,2009,(6):64−67. doi: 10.3969/j.issn.1674-8492.2009.06.017

    LI Li, LI Ke-jian, WU Xiu-zhang. Synergistic effects and preliminary application of the coal/oil coprocessing[J]. Energy Sci Technol,2009,(6):64−67. doi: 10.3969/j.issn.1674-8492.2009.06.017
    [7]
    商思玉, 凌开成, 王建平, 盛清涛, 申峻. 神府煤与胜利减压渣油共处理反应特性的研究[J]. 燃料化学学报,2005,33(1):47−52. doi: 10.3969/j.issn.0253-2409.2005.01.010

    SHANG Si-yu, LING Kai-cheng, WANG Jian-ping, SHENG Qing-tao, SHEN Jun. Reaction characteristics of coprocessing of Shenfu coal and Shengli vacuum residue[J]. J Fuel Chem Technol,2005,33(1):47−52. doi: 10.3969/j.issn.0253-2409.2005.01.010
    [8]
    胡发亭, 李军芳, 毛学锋. 重质油与长焰煤共加氢反应性能[J]. 石油加工,2019,35(4):798−806.

    HU Fa-ting, LI Jun-fang, MAO Xue-feng. Co-hydrogenation performance of heavy oil with long flame coal[J]. Acta Pet Sin (Pet Process Sect),2019,35(4):798−806.
    [9]
    王光耀, 张晓静, 陈贵锋, 李培霖, 颜丙峰. 煤油共处理中原料油结构对供氢性能影响研究[J]. 洁净煤技术,2015,21(3):83−87+92.

    WANG Guang-yao, ZHANG Xiao-jing, CHEN Gui-feng, LI Pei-lin, YAN Bing-feng. Influence of raw oil structure on hydrogen donation capacity during coal oil co-processing[J]. Clean Coal Technol,2015,21(3):83−87+92.
    [10]
    洪琨, 马凤云, 钟梅, 刘景梅, 莫文龙. 渣油重组分沥青质结构分析及其对临氢热反应过程生焦的影响[J]. 燃料化学学报,2016,44(3):357−365. doi: 10.3969/j.issn.0253-2409.2016.03.014

    HONG Kun, MA Feng-yun, ZHONG Mei, LIU Jing-mei, MO Wen-long. Analysis of asphaltene structure and its effects on the coking behavior in the process of hydrothermal cracking[J]. J Fuel Chem Technol,2016,44(3):357−365. doi: 10.3969/j.issn.0253-2409.2016.03.014
    [11]
    张德祥, 高晋生, 朱之培. 年青煤在石油重油中加氢液化的研究[J]. 华东理工大学学报,1986,12(3):46−55.

    ZHANG De-xiang, GAO Jin-sheng, ZHU Zhi-pei. The liquefaction of some Chinese low rank coals by hydrogenation in various heavy oils of petroleum[J]. J East Chin Univ Sci Technol,1986,12(3):46−55.
    [12]
    高晋生, 张佩芳, 孙培桦, 杭月珍, OELERT H H. 中国年轻煤加氢液化研究Ⅲ. 兖州煤的加氢液化[J]. 燃料化学学报,1988,16(4):321−327.

    GAO Jin-sheng, ZHANG Pei-fang, SUN Pei-hua, HANG Yue-zhen, OELERT H H. Investigation on the hydroliquefaction of chinese low rank coals Ⅲ. Examination on the liquefaction of Yanzhou coal[J]. J Fuel Chem Technol,1988,16(4):321−327.
    [13]
    阎瑞萍, 朱继升, 杨建丽, 刘振宇. 兖州煤与大庆减压渣油在共处理过程中的相互作用Ⅰ. 共处理对转化率及产物分布的影响[J]. 燃料化学学报,2000,28(6):527−532. doi: 10.3969/j.issn.0253-2409.2000.06.010

    YAN Rui-ping, ZHU Ji-sheng, YANG Jian-li, LIU Zhen-yu. Interaction between a bituminous coal and a paraffinic petroleum residue in coprocessing Ⅰ. Effect of compressing conditions on conversion and products distribution[J]. J Fuel Chem Technol,2000,28(6):527−532. doi: 10.3969/j.issn.0253-2409.2000.06.010
    [14]
    黄澎, 李文博, 毛学锋, 马博文. 热解重油加氢裂化制取高芳潜石脑油的研究[J]. 燃料化学学报,2019,47(11):1329−1336. doi: 10.3969/j.issn.0253-2409.2019.11.007

    HUANG Peng, LI Wen-bo, MAO Xue-feng, MA Bo-wen. Study on preparation of high aromatic potential naphtha from pyrolysis heavy oil via hydrocracking[J]. J Fuel Chem Technol,2019,47(11):1329−1336. doi: 10.3969/j.issn.0253-2409.2019.11.007
    [15]
    陶义. 不同来源渣油的加氢及生焦特性研究[D]. 青岛: 中国石油大学(华东), 2017.

    TAO Yi. Study on different residue hydrotreating and coking characteristics[D]. Qingdao: China University of Petroleum (East China), 2017.
    [16]
    方正美, 吕海燕, 张媛媛, 宁奕飞, 潘铁英, 张德祥. 溶剂特性对淖毛湖煤加氢液化中间产物反应行为的影响[J]. 燃料化学学报,2019,47(8):907−914. doi: 10.3969/j.issn.0253-2409.2019.08.002

    FANG Zheng-mei, LÜ Hai-yan, ZHANG Yuan-yuan, NING Yi-fei, PAN Tie-ying, ZHANG De-xiang. Effect of solvent characteristics on reaction behavior of hydroliquefaction intermediate products from Naomaohu coal[J]. J Fuel Chem Technol,2019,47(8):907−914. doi: 10.3969/j.issn.0253-2409.2019.08.002
    [17]
    董明, 龙军, 王子军, 侯焕娣, 王威. 沥青质临氢热裂化转化规律初步研究[J]. 石油加工,2015,31(3):643−649.

    DONG Ming, LONG Jun, WANG Zijun, HOU Huandi, WANG Wei. Preliminary investigation on behaviors of thermal conversion of asphaltene in the presence of hydrogen and catalyst[J]. Acta Pet Sin (Pet Process Sect),2015,31(3):643−649.
    [18]
    仝配配, 王子军. 石油加工过程中焦炭形 成的原因、类型及影响因素[J]. 化工进展,2016,35(S1):101−108.

    TONG Pei-pei, WANG Zi-jun. Causes, types and influencing factors of coke formation in petroleum processing[J]. Chem Ind Eng Prog,2016,35(S1):101−108.
    [19]
    王蕴, 王卫平, 王鹏飞, 吴治国. 原料油对油煤共炼反应结果影响的研究[J]. 石油炼制与化工,2016,47(5):6−11. doi: 10.3969/j.issn.1005-2399.2016.05.002

    WANG Yun, WANG Wei-ping, WANG Peng-fei, WU Zhi-guo. Influence of oils on oil-coal co-processing[J]. Pet Process Petrochem,2016,47(5):6−11. doi: 10.3969/j.issn.1005-2399.2016.05.002
    [20]
    高山松, 张德祥, 李克健. 中温煤焦油与新疆黑山煤共处理的研究[J]. 煤炭转化,2015,38(2):40−44. doi: 10.3969/j.issn.1004-4248.2015.02.010

    GAO Shan-song, ZHANG De-xiang, LI Ke-jian. Study on co-processing of Xinjiang Heishan coal with medium temperature coal tar[J]. Coal Convers,2015,38(2):40−44. doi: 10.3969/j.issn.1004-4248.2015.02.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (538) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return