Volume 49 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
LU Si-yu, YANG Hai-yan, YANG Cheng-guang, GAO Peng, SUN Yu-han. Highly selective synthesis of LPG from CO2 hydrogenation over In2O3/SSZ-13 binfunctional catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1132-1139. doi: 10.1016/S1872-5813(21)60057-9
Citation: LU Si-yu, YANG Hai-yan, YANG Cheng-guang, GAO Peng, SUN Yu-han. Highly selective synthesis of LPG from CO2 hydrogenation over In2O3/SSZ-13 binfunctional catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1132-1139. doi: 10.1016/S1872-5813(21)60057-9

Highly selective synthesis of LPG from CO2 hydrogenation over In2O3/SSZ-13 binfunctional catalyst

doi: 10.1016/S1872-5813(21)60057-9
Funds:  The projected was supported by the National Natural Science Foundation of China (21773286, U1832162), Youth Innovation Promotion Association CAS (2018330), “Transformational Technologies for Clean Energy and Demonstration,” Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21090204), the Shanghai Rising-Star Program, China (19QA1409900)
  • Received Date: 2021-02-05
  • Rev Recd Date: 2021-02-22
  • Available Online: 2021-03-09
  • Publish Date: 2021-08-31
  • Highly selective synthesis of liquefied petroleum gas (LPG, ${\rm{C}}_3^0 $ and ${\rm{C}}_4^0 $) from CO2 hydrogenation have realized over the In2O3/SSZ-13 bifunctional catalyst. The physicochemical properties of the bifunctional catalyst were characterized by X-ray diffraction spectroscopy (XRD), N2 physical adsorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and NH3 temperature-programmed desorption (NH3-TPD). The particle size effect of In2O3 and reaction conditions were investigated for CO2 hydrogenation to LPG over the In2O3/SSZ-13 bifunctional catalyst. Results indicate that CO2 conversion and CO selectivity are related to the particle size of In2O3, and fresh 5 nm In2O3 shows the highest CO2 conversion (11.7%) and the highest CO selectivity (61.0%), since it is more prone to reverse water gas reaction (RWGS). However, the hydrocarbon distribution does not exhibit a dependence of In2O3 size changes, and the selectivity of LPG maintains at 90% and the selectivity of propane reaches up to 76.8% due to the 8-MR micropores and strong acid sites of SSZ-13 zeolite. Additionally, the yield of LPG shows a volcano type with increasing reaction temperature, and the optimal reaction temperature is 370 ℃. Low space velocity is more favorable to the CO2 conversion, and LPG selectivity in hydrocarbon products still maintains about 90%. High reaction pressure is beneficial to improving the yield of LPG via promoting the secondary hydrogenation reaction over the SSZ-13 zeolite and inhibiting CO formation. Furthermore, no obvious deactivation is observed after a time on stream (TOS) of 100 h over the In2O3/SSZ-13 bifunctional catalyst at 350 ℃, 3 MPa and 9000 mL/(gcat·h). The research provides a new strategy for highly selective synthesis of LPG from CO2 hydrogenation.
  • loading
  • [1]
    ALVAREZ A, BANSODE A, URAKAWA A, BAVYKINA A V, WEZENDONK T A, MAKKEE M, GASCON J, KAPTEIJN F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chem Rev,2017,117(14):9804−9838. doi: 10.1021/acs.chemrev.6b00816
    [2]
    LIU X L, WANG M H, ZHOU C, ZHOU W, CHENG K, KANG J C, ZHANG Q H, DENG W P, WANG Y. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. ChemComm,2018,54:140−143.
    [3]
    JIANG X, NIE X, GUO X, SONG C, CHEN J G. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chem Rev,2020,120(15):7984−8034. doi: 10.1021/acs.chemrev.9b00723
    [4]
    DAS S, PEREZ RAMIREZ J, GONG J, DEWANGAN N, HIDAJAT K, GATES B. C, KAWI S. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2[J]. Chem Soc Rev,2000,49:2937−3004.
    [5]
    GOEPPERT A, CZAUN M, JONES J P, SURYA PRAKASH G K, OLAH G A. Recycling of carbon dioxide to methanol and derived products - closing the loop[J]. Chem Soc Rev,2014,43(23):7995−8048. doi: 10.1039/C4CS00122B
    [6]
    LI C, YUAN X, FUJIMOTO K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite[J]. Appl Catal A: Gen,2014,475:155−160. doi: 10.1016/j.apcata.2014.01.025
    [7]
    LI H, ZHANG P, GUO L, HE Y, ZENG Y, THONGKAM M, NATAKARANAKUL J, KOJIMA T, REUBROYCHAROEN P, VITIDSANT T, YANG G, TSUBAKI N. A well-defined core-shell-structured capsule catalyst for direct conversion of CO2 into liquefied petroleum gas[J]. Chem Sus Chem,2020,13(8):2060−2065. doi: 10.1002/cssc.201903576
    [8]
    GAO P, DANG S, LI S, BU X, LIU Z, QIU M, YANG C, WANG H, ZHONG L, HAN Y, LIU Q, WEI W, SUN Y. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal,2017,8:571−578.
    [9]
    LI Z L, WANG J J, QU Y Z, LIU H L, TANG C Z, MIAO S, FENG Z C, AN H Y, LI C. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catal,2017,7(12):8544−8548. doi: 10.1021/acscatal.7b03251
    [10]
    LIU X, WANG M, YIN H, HU J, CHENG K, KANG J, ZHANG Q, WANG Y. Tandem catalysis for hydrogenation of CO and CO2 to lower olefins with bifunctional catalysts composed of spinel oxide and SAPO-34[J]. ACS Catal,2020,10:8303−8314.
    [11]
    MA Z, POROSOFF M D. Development of tandem catalysts for CO2 hydrogenation to olefins[J]. ACS Catal,2019,9(3):2639−2656. doi: 10.1021/acscatal.8b05060
    [12]
    SONG G, LI M, YAN P, NAWAZ M A, LIU D. High conversion to aromatics via CO2-FT over a CO-reduced Cu-Fe2O3 catalyst integrated with HZSM-5[J]. ACS Catal,2020,10(19):11268−11279. doi: 10.1021/acscatal.0c02722
    [13]
    WANG Y, TAN L, TAN M H, ZHANG P P, FANG Y, YONEYAMA Y, YANG G H, TSUBAKI N. Rationally designing bifunctional catalysts as an efficient strategy to boost CO2 hydrogenation producing value-added aromatics[J]. ACS Catal,2019,9(2):895−901. doi: 10.1021/acscatal.8b01344
    [14]
    ZHOU C, SHI J, ZHOU W, CHENG K, ZHANG Q, KANG J, WANG Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catal,2019,10:302−310.
    [15]
    GAO P, ZHANG L, LI S, ZHOU Z, SUN Y. Novel heterogeneous catalysts for CO2 hydrogenation to liquid fuels[J]. ACS Cent Sci,2020,6(10):1657−1670. doi: 10.1021/acscentsci.0c00976
    [16]
    GAO P, LI S, BU X, DANG S, LIU Z, WANG H, ZHONG L, QIU M, YANG C, CAI J, WEI W, SUN Y. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat Chem,2017,9(10):1019−1024. doi: 10.1038/nchem.2794
    [17]
    WEI J, YAO R, GE Q, XU D, FANG C, ZHANG J, XU H, SUN J. Precisely regulating Brønsted acid sites to promote the synthesis of light aromatics via CO2 hydrogenation[J]. Appl Catal B: Environ,2021,283:119648.
    [18]
    LIU Z, NI Y, SUN T, ZHU W, LIU Z. Conversion of CO2 and H2 into propane over InZrO and SSZ-13 composite catalyst[J]. J. Energy Chem,2021,54:111−117. doi: 10.1016/j.jechem.2020.04.069
    [19]
    XU Z, MA H, HUANG Y, QIAN W, ZHANG H, YING W. Synthesis of submicron SSZ-13 with tunable acidity by the seed-assisted method and its performance and coking behavior in the MTO reaction[J]. ACS Omega,2020,5(38):24574−24583. doi: 10.1021/acsomega.0c03075
    [20]
    YU H F, ZHANG G P, HAN LN, CHANG L P, BAO W R, WANG J C. Cu-SSZ-13 catalyst synthesized under microwave irradiation and its performance in catalytic removal of NOx from vehicle exhaust[J]. Acta Phys-Chim Sin,2015,31(11):2165−2173. doi: 10.3866/PKU.WHXB201509184
    [21]
    XU Z, LI J, HUANG Y, MA H, QIAN W, ZHANG H, YING W. Size control of SSZ-13 crystals with APAM and its influence on the coking behaviour during MTO reaction[J]. Catal Sci Technol,2019,9(11):2888−2897. doi: 10.1039/C9CY00412B
    [22]
    WU L, HENSEN E J M. Comparison of mesoporous SSZ-13 and SAPO-34 zeolite catalysts for the methanol-to-olefins reaction[J]. Catalysis Today,2014,235:160−168. doi: 10.1016/j.cattod.2014.02.057
    [23]
    DANG S S, GAO P, LIU Z Y, CHEN X Q, YANG C G, WANG H, ZHONG L S, LI S G, SUN Y H. Role of zirconium in direct CO2 hydrogenation to lower olefins on oxide/zeolite bifunctional catalysts[J]. J Catal,2018,364:382−393. doi: 10.1016/j.jcat.2018.06.010
    [24]
    JIA X, SUN K, WANG J, SHEN C, LIU C J. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. J. Energy Chem,2020,50:409−415. doi: 10.1016/j.jechem.2020.03.083
    [25]
    YU Z, HONG N W, RUO YU C. In situ synthesis of Cu-SSZ-13/cordierite monolithic catalyst for the selective catalytic reduction of NO with NH3[J]. Acta Phys-Chim Sin,2015,31(2):329−336. doi: 10.3866/PKU.WHXB201412082
    [26]
    LI Z, QU Y, WANG J, LIU H, LI M, MIAO S, LI C. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule,2019,3(2):570−583. doi: 10.1016/j.joule.2018.10.027
    [27]
    YE J, LIU C, M EI, D, G E, Q. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): A DFT study[J]. ACS Catal,2013,3(6):1296−1306. doi: 10.1021/cs400132a
    [28]
    MARTIN O, MARTIN A J, MONDELLI C, MITCHELL S, SEGAWA T F, HAUERT R, DROUILLY C, CURULLA-FERRE D, PEREZ-RAMIREZ J. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angew Chem Int Ed Eng,2016,55(21):6261−6265. doi: 10.1002/anie.201600943
    [29]
    LI Y, Wang W T, ZHAO F, XU Y T. H - SSZ - 13 molecular sieve synthesized by introducing accelerant and its effect on reactivity of MTO[J]. J Tiangong Univ,2015,34(6):35−40.
    [30]
    NUMPILAI T, WATTANAKIT C, CHAREONPANICH M, LIMTRAKUL J, WITOON T. Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34[J]. Energy Convers Manage,2019,180:511−523. doi: 10.1016/j.enconman.2018.11.011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (454) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return