Volume 49 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
JI Jie, XU Xin-qiang, XU Ying, WANG Zhe, WANG Jia-ni. Research on performance of direct coal liquefaction residue modified asphalt mortar[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1095-1101. doi: 10.1016/S1872-5813(21)60081-6
Citation: JI Jie, XU Xin-qiang, XU Ying, WANG Zhe, WANG Jia-ni. Research on performance of direct coal liquefaction residue modified asphalt mortar[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1095-1101. doi: 10.1016/S1872-5813(21)60081-6

Research on performance of direct coal liquefaction residue modified asphalt mortar

doi: 10.1016/S1872-5813(21)60081-6
Funds:  The project was supported by the National Natural Science Foundation of China (51778038, 52078025), Beijing Natural Science Foundation Committee-Beijing Municipal Education Commission (KZ201910016017), China Highway Engineering Consulting Corporation (YFZX-2019-06), Program for Changjiang Scholars and Innovative Research Team in University (IRT-17R06), BUCEA Post Graduate Innovation Project (PG2021005)
  • Received Date: 2021-01-08
  • Rev Recd Date: 2021-02-14
  • Available Online: 2021-03-09
  • Publish Date: 2021-08-31
  • In order to study the performance of DCLR (direct coal liquefaction residue) modified asphalt mortar, different DCLR modified asphalt mortar with different DCLR contents and filler-asphalt ratios (FA) was prepared. The high-and-low temperature and fatigue performance of asphalt mortar was analyzed by a dynamic shear rheometer and a bending beam rheometer. Using the variance analysis method the influence of the single factor (temperature, DCLR content, FA) and the coupling between these factors on the performance of asphalt mortar was investigated. The results show that the addition of DCLR and filler can significantly improve the high-temperature performance of asphalt mortar, but damage the low-temperature performance and the fatigue performance of asphalt mortar. To comprehensively balance the effects of DCLR content and FA on the performance of the mortar, the DCLR content of 10% and the FA of 1.0 are recommended. Besides, the single factor (temperature, DCLR content, FA) and the coupling between these factors have significant effects on the performance of asphalt mortar, but the effect of the coupling is smaller than that of the single factor.
  • loading
  • [1]
    李军, 杨建丽, 刘振宇. 煤直接液化残渣的热解特性研究[J]. 燃料化学学报,2010,38(4):385−390. doi: 10.3969/j.issn.0253-2409.2010.04.001

    LI Jun, YANG Jian-li, LIU Zhen-yu. Pyrolysis behavior of direct coal liquefaction residues[J]. J Fuel Chem Technol,2010,38(4):385−390. doi: 10.3969/j.issn.0253-2409.2010.04.001
    [2]
    王寨霞, 杨建丽, 刘振宇. 煤直接液化残渣对道路沥青改性作用的初步评价[J]. 燃料化学学报,2007,35(1):109−112. doi: 10.3969/j.issn.0253-2409.2007.01.021

    WANG Zhai-xia, YANG Jian-li, LIU Zhen-yu. Preliminary study on direct coal liquefaction residue as paving asphalt modifier[J]. J Fuel Chem Technol,2007,35(1):109−112. doi: 10.3969/j.issn.0253-2409.2007.01.021
    [3]
    XU G, ZHONG J, SHI X M. Influence of graphene oxide in a chemically activated fly ash[J]. Fuel,2018,226:644−657. doi: 10.1016/j.fuel.2018.04.033
    [4]
    季节, 石越峰, 索智, 徐世法, 杨松, 李鹏飞. DCLR与TLA共混改性沥青的性能对比[J]. 燃料化学学报,2015,43(9):1061−1067. doi: 10.3969/j.issn.0253-2409.2015.09.006

    JI Jie, SHI Yue-feng, SUO Zhi, XU Shi-fa, YANG Song, LI Peng-fei. Comparison on properties of modified asphalt blended with DCLR and TLA[J]. J Fuel Chem Technol,2015,43(9):1061−1067. doi: 10.3969/j.issn.0253-2409.2015.09.006
    [5]
    季节, 李鹏飞, 索智, 石越峰, 许鹰, 徐世法. DCLR掺量和粉胶比对沥青胶浆性能的影响分析[J]. 重庆交通大学学报(自然科学版),2016,35(2):35−39+178.

    JI Jie, LI Peng-fei, SUO Zhi, SHI Yue-feng, XU Ying, XU Shi-fa. Analysis of the properties of asphalt mortar affected by DCLR content and filler-asphalt ratio[J]. J Chongqing Jiaotong Univ (Nat Sci Ed),2016,35(2):35−39+178.
    [6]
    JI J, WANG Z, ZHANG R, WEI J M, SUO Z, YOU Z P, HU J P. Rutting resistance of direct coal liquefaction residue (DCLR) modified asphalt mixture under variable loads over a wide temperature range[J]. Constr Build Mater,2020,257:119489.
    [7]
    李辉. 煤直接液化残渣改性沥青的低温特性研究[D]. 北京: 北京建筑大学, 2020.

    LI Hui. Study on low-temperature performance of direct coal liquefaction residue modified asphalt[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2020.
    [8]
    季节, 苑志凯, 魏建明, 索智, 许鹰, 李辉, 石越峰. 煤直接液化残渣改性沥青低温性能的改进[J]. 中国石油大学学报(自然科学版),2019,43(4):166−173.

    JI Jie, YUAN Zhi-kai, WEI Jian-ming, SUO Zhi, XU Ying, LI Hui, SHI Yue-feng. Improvements of low-temperature properties of direct coal liquefaction residue modified asphalt[J]. J Chin Univ Pet (Nat Sci Ed),2019,43(4):166−173.
    [9]
    翟旭刚, 陈博, 丁龙亭. ZnO对DCLR改性沥青抗永久变形及抗紫外老化性能影响[J]. 公路工程,2019,44(04):74−78.

    ZHAI Xu-gang, CHEN Bo, DING Long-ting. Influence of ZnO on Anti-permanent Deformation and Anti-UV Ageing Performances of DCLR Modified Asphalt[J]. Highway Eng,2019,44(04):74−78.
    [10]
    MOON K H, FALCHETTO A C, WANG D, RICCARDI C, WISTUBA M P. Mechanical performance of asphalt mortar containing hydrated lime and eafss at low and high temperatures[J]. Materials,2017,10:743. doi: 10.3390/ma10070743
    [11]
    牛永宏, 唐德密. 粉胶比对SBS改性沥青胶浆力学性能的影响分析[J]. 施工技术,2017,46(15):88−92.

    NIU Yong-hong, TANG De-mi. Effect of filler-bitumen ratio on mechanical properties of SBS modified asphalt mucilage[J]. Constr Technol,2017,46(15):88−92.
    [12]
    QIU H S, TAN X M, SHI S, ZHANG H. Influence of filler-bitumen ratio on performance of modified asphalt mortar by additive[J]. J Mod Transp,2013,21(1):40−46. doi: 10.1007/s40534-013-0002-2
    [13]
    谢祥兵, 李广慧, 李晗, 童申家, 耿九光. 紫外光照下的沥青胶浆材料性能评价[J]. 公路交通科技,2020,37(4):15−23.

    XIE Xiang-bing, LI Guang-hui, LI Han, TONG Shen-jia, GENG Jiu-guang. Evaluation of performance of asphalt mortar material under ultraviolet irradiation[J]. J Highw Transp Res Dev,2020,37(4):15−23.
    [14]
    JTG E42—2005, 公路工程集料试验规程[S].

    JTG E42—2005, Test Methods of Aggregate for Highway Engineering[S].
    [15]
    JTG E20—2011, 公路工程沥青及沥青混合料试验规程[S].

    JTG E20—2011, Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering[S].
    [16]
    GB/T 15555.12—1995, 固体废物 腐蚀性测定 玻璃电极法[S].

    (GB/T 15555.12—1995, Solid waste-Glass electrode test-Method of corrosively[S]).
    [17]
    GB 5085.5—2007, 危险废物鉴别标准 反应性鉴别[S].

    GB 5085.5—2007, Identification standards for hazardous wastes Identification for reactivity[S].
    [18]
    GB 5085.3—2007, 危险废物鉴别标准 浸出毒性鉴别[S].

    GB 5085.3—2007, Identification standards for hazardous wastes-Identification for extraction toxicity[S].
    [19]
    GB 5085.1—2007, 危险废物鉴别标准 腐蚀性鉴别[S].

    GB 5085.1—2007, Identification standards for hazardous wastes-Identification for corrosivity[S].
    [20]
    刘红瑛, 徐金枝, 张振兴, 常睿, 郝培文. 多聚磷酸改性沥青高温评价性能指标研究[J]. 华南理工大学学报(自然科学版),2016,44(8):98−105.

    LIU Hong-ying, XU Jin-zhi, ZHANG Zhen-xing, CHANG Rui, HAO Pei-wen. Investigation into high temperature evaluation indexes of polyphosphoric acid-modified asphalt[J]. J South China Univ Technol (Nat Sci Ed),2016,44(8):98−105.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (435) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return