Volume 49 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
WANG Dong, ZHONG Da-zhong, HAO Gen-yan, LI Jin-ping, ZHAO Qiang. ZnOHF nanorods for efficient electrocatalytic reduction of carbon dioxide to carbon monoxide[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1379-1388. doi: 10.1016/S1872-5813(21)60082-8
Citation: WANG Dong, ZHONG Da-zhong, HAO Gen-yan, LI Jin-ping, ZHAO Qiang. ZnOHF nanorods for efficient electrocatalytic reduction of carbon dioxide to carbon monoxide[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1379-1388. doi: 10.1016/S1872-5813(21)60082-8

ZnOHF nanorods for efficient electrocatalytic reduction of carbon dioxide to carbon monoxide

doi: 10.1016/S1872-5813(21)60082-8
Funds:  The project was supported by the National Natural Science Foundation of China (21878202, 21975175), the Research Project Supported by Shanxi Scholarship Council of China (2017-041) and the Natural Science Foundation of Shanxi Province (201801D121052)
  • Received Date: 2021-03-09
  • Rev Recd Date: 2021-04-01
  • Available Online: 2021-04-22
  • Publish Date: 2021-09-30
  • The utilization of carbon dioxide as a resource through electrocatalysis is one of the ideal ways to alleviate or solve the current ecological crisis mankind facing. The development of inexpensive and efficient catalysts is the key to promoting the industrialization of electrocatalytic carbon dioxide reduction. CO is an important industrial raw material, as a result, CO2 reduction to CO has important research significance. However, high-active noble metal catalysts that can convert CO2 to CO are difficult to apply in large scale. Zn-based catalysts are potential substitutes. However, the reduction activity of Zn-based catalysts still can not meet the actual needs. In this paper, ZnOHF material is employed in the electrocatalytic CO2 reduction for the first time. ZnOHF nanorods of different sizes are prepared through a simple hydrothermal synthesis method and tested in a Flow-Cell. The large specific surface area of the nanorods and the existence of F atoms on the surface of the material lead to good catalytic activity. The Flow-Cell accelerates the reaction mass transfer process. At –1.28 V (vs. RHE), the R2-ZnOHF nanorods have the highest CO Faraday efficiency of 76.4% with the CO current density of 57.53 mA/cm2.
  • loading
  • [1]
    NEREM R S, BECKLEY B D, FASULLO J T, HAMLINGTON B D, MASTERS D, MITCHUM G T. Climate-change-driven accelerated sea-level rise detected in the altimeter era[J]. Proc Natl Acad Sci,2018,115(9):2022. doi: 10.1073/pnas.1717312115
    [2]
    WIDLANSKY M J, LONG X, SCHLOESSER F. Increase in sea level variability with ocean warming associated with the nonlinear thermal expansion of seawater[J]. Commun Earth Environ,2020,1(1):9. doi: 10.1038/s43247-020-0008-8
    [3]
    ZHENG T, JIANG K, WANG H. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts[J]. Adv Mater,2018,30(48):1802066. doi: 10.1002/adma.201802066
    [4]
    SUN Z, MA T, TAO H, FAN Q, HAN B. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials[J]. Chem,2017,3(4):560−587. doi: 10.1016/j.chempr.2017.09.009
    [5]
    ZHANG L, ZHAO Z-J, GONG J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms[J]. Angew Chem Int Ed,2017,56(38):11326−11353. doi: 10.1002/anie.201612214
    [6]
    ROSS M B, DE LUNA P, LI Y, DINH C-T, KIM D, YANG P, SARGENT EH. Designing materials for electrochemical carbon dioxide recycling[J]. Nat Catal,2019,2(8):648−658. doi: 10.1038/s41929-019-0306-7
    [7]
    ROSS M B, LI Y, DE LUNA P, KIM D, SARGENT E H, YANG P. Electrocatalytic rate alignment enhances syngas generation[J]. Joule,2019,3(1):257−264. doi: 10.1016/j.joule.2018.09.013
    [8]
    BACK S, YEOM M S, JUNG Y. Active sites of Au and Ag nanoparticle catalysts for CO2 electroreduction to CO[J]. ACS Catal,2015,5(9):5089−5096. doi: 10.1021/acscatal.5b00462
    [9]
    LIU S, TAO H, ZENG L, LIU Q, XU Z, LIU Q, LUO J-L. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates[J]. J Am Chem Soc,2017,139(6):2160−2163. doi: 10.1021/jacs.6b12103
    [10]
    YANG W, DASTAFKAN K, JIA C, ZHAO C. Design of electrocatalysts and electrochemical cells for carbon dioxide reduction reactions[J]. Adv Mater Technol,2018,3(9):1700377. doi: 10.1002/admt.201700377
    [11]
    GARZA A J, BELL A T, HEAD-GORDON M. Mechanism of CO2 reduction at copper surfaces: Pathways to C2 products[J]. ACS Catal,2018,8(2):1490−1499. doi: 10.1021/acscatal.7b03477
    [12]
    ZHANG Y-J, SETHURAMAN V, MICHALSKY R, PETERSON AA. Competition between CO2 reduction and H2 evolution on transition-metal electrocatalysts[J]. ACS Catal,2014,4(10):3742−3748. doi: 10.1021/cs5012298
    [13]
    CAVE E R, SHI C, KUHL K P, HATSUKADE T, ABRAM D N, HAHN C, CHAN K, JARAMILLO T F. Trends in the catalytic activity of hydrogen evolution during CO2 electroreduction on transition metals[J]. ACS Catal,2018,8(4):3035−3040. doi: 10.1021/acscatal.7b03807
    [14]
    PAN Q, PENG J, SUN T, WANG S, WANG S. Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites[J]. Catal Commun,2014,45:74−78. doi: 10.1016/j.catcom.2013.10.034
    [15]
    ZHAO S, JIN R, JIN R. Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: From bulk metals to nanoparticles and atomically precise nanoclusters[J]. ACS Energy Lett,2018,3(2):452−462. doi: 10.1021/acsenergylett.7b01104
    [16]
    CHEN Y, LI CW, KANAN MW. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. J Am Chem Soc,2012,134(49):19969−19972. doi: 10.1021/ja309317u
    [17]
    MUN Y, LEE S, CHO A, KIM S, HAN JW, LEE J. Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO[J]. Appl Catal B: Environ,2019,246:82−88. doi: 10.1016/j.apcatb.2019.01.021
    [18]
    LUO W, ZHANG J, LI M, ZÜTTEL A. Boosting CO Production in Electrocatalytic CO2 reduction on highly porous Zn catalysts[J]. ACS Catal,2019,9(5):3783−3791. doi: 10.1021/acscatal.8b05109
    [19]
    DENG W, MIN S, WANG F, ZHANG Z, KONG C. Efficient CO2 electroreduction to CO at low overpotentials using a surface-reconstructed and N-coordinated Zn electrocatalyst[J]. Dalton Trans,2020,49(17):5434−5439. doi: 10.1039/D0DT00800A
    [20]
    WON D H, SHIN H, KOH J, CHUNG J, LEE H S, KIM H, WOO S I. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst[J]. Angew Chem Int Ed,2016,55(32):9297−9300. doi: 10.1002/anie.201602888
    [21]
    NGUYEN D L T, JEE M S, WON D H, OH H-S, MIN B K, HWANG Y J. Effect of halides on nanoporous Zn-based catalysts for highly efficient electroreduction of CO2 to CO[J]. Catal Commun,2018,114:109−113. doi: 10.1016/j.catcom.2018.06.020
    [22]
    HSIEH Y-C, BETANCOURT L E, SENANAYAKE S D, HU E, ZHANG Y, XU W, POLYANSKY D E. Modification of CO2 reduction activity of nanostructured silver electrocatalysts by surface halide anions[J]. ACS Appl Energy Mater,2019,2(1):102−109. doi: 10.1021/acsaem.8b01692
    [23]
    VARELA A S, JU W, REIER T, STRASSER P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides[J]. ACS Catal,2016,6(4):2136−2144. doi: 10.1021/acscatal.5b02550
    [24]
    LIU K, SMITH W A, BURDYNY T. Introductory guide to assembling and operating gas diffusion electrodes for electrochemical CO2 reduction[J]. ACS Energy Lett,2019,4(3):639−643. doi: 10.1021/acsenergylett.9b00137
    [25]
    WEEKES D M, SALVATORE D A, REYES A, HUANG A, BERLINGUETTE C P. Electrolytic CO2 reduction in a flow cell[J]. Acc Chem Res,2018,51(4):910−918. doi: 10.1021/acs.accounts.8b00010
    [26]
    REN S, JOULIÉ D, SALVATORE D, TORBENSEN K, WANG M, ROBERT M, BERLINGUETTE C P. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science,2019,365(6451):367. doi: 10.1126/science.aax4608
    [27]
    ZHONG D, ZHANG L, ZHAO Q, CHENG D, DENG W, LIU B, ZHANG G, DONG H, YUAN X, ZHAO Z, LI J, GONG J. Concentrating and activating carbon dioxide over AuCu aerogel grain boundaries[J]. J Chem Phys,2020,152(20):204703. doi: 10.1063/5.0007207
    [28]
    AHMAD S, RAWAT P, NAGARAJAN R. Facile green synthesis of Zn(OH)F from the single source precursor KZnF3[J]. Mater Lett,2015,139:86−88. doi: 10.1016/j.matlet.2014.10.037
    [29]
    GONG X, YU L, TIAN G, WANG L, ZHAO Y, MAI W, WANG W. Synthesis and characterization of flower-like ZnO nanostructures via flower-like ZnOHF intermediate[J]. Mater Lett,2014,127:36−39. doi: 10.1016/j.matlet.2014.04.071
    [30]
    MENG F, HOU N, JIN Z, SUN B, GUO Z, KONG L, XIAO X, WU H, LI M, LIU J. Ag-decorated ultra-thin porous single-crystalline ZnO nanosheets prepared by sunlight induced solvent reduction and their highly sensitive detection of ethanol[J]. Sens Actuators, B,2015,209:975−982. doi: 10.1016/j.snb.2014.12.078
    [31]
    ZHONG D, ZHAO Z-J, ZHAO Q, CHENG D, LIU B, ZHANG G, DENG W, DONG H, ZHANG L, LI J, LI J, GONG J. Coupling of Cu(100) and (110) facets promotes carbon dioxide conversion to hydrocarbons and alcohols[J]. Angew Chem Int Ed,2021,60(9):4879−4885. doi: 10.1002/anie.202015159
    [32]
    LI J, CHANG K, ZHANG H, HE M, GODDARD W A, CHEN J G, CHENG M-J, LU Q. Effectively increased efficiency for electroreduction of carbon monoxide using supported polycrystalline copper powder electrocatalysts[J]. ACS Catal,2019,9(6):4709−4718. doi: 10.1021/acscatal.9b00099
    [33]
    QIN B, LI Y, FU H, WANG H, CHEN S, LIU Z, PENG F. Electrochemical reduction of CO2 into tunable syngas production by regulating the crystal facets of earth-abundant Zn catalyst[J]. ACS Appl Mater Interfaces,2018,10(24):20530−20539. doi: 10.1021/acsami.8b04809
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (855) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return