Volume 49 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
ZHENG Hong-yan, ZHAO Zi-long, XIAO Lu-qingshan, ZHAO Wen-shi, LIANG Xu-bin, XUE Yan-feng, YANG Hong, NIU Yu-lan, ZHU Yu-lei. Catalytic conversion of cellulose and starch to furfural over zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1261-1269. doi: 10.1016/S1872-5813(21)60083-X
Citation: ZHENG Hong-yan, ZHAO Zi-long, XIAO Lu-qingshan, ZHAO Wen-shi, LIANG Xu-bin, XUE Yan-feng, YANG Hong, NIU Yu-lan, ZHU Yu-lei. Catalytic conversion of cellulose and starch to furfural over zeolites[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1261-1269. doi: 10.1016/S1872-5813(21)60083-X

Catalytic conversion of cellulose and starch to furfural over zeolites

doi: 10.1016/S1872-5813(21)60083-X
Funds:  The project was supported by the National Natural Science Foundation of China (21908151), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0925)
  • Received Date: 2021-01-19
  • Rev Recd Date: 2021-04-01
  • Available Online: 2021-04-22
  • Publish Date: 2021-09-30
  • Conversion of cellulose and starch to furfural was investigated over four zeolites. The zeolites were characterized by X-ray diffraction, 27Al MAS NMR, IR spectra of pyridine adsorption and NH3 temperature-programmed desorption. The roles of acidity and pore structure of zeolites in conversion of cellulose and starch were discussed in detail. The results showed that Hβ zeolite with appropriate Brønsted acid sites, Lewis acid sites and pore structure was effective to produce furfural from cellulose and starch. HY zeolite could not catalyze cellulose reaction with high conversion because of its weak acidity. However, HY zeolite was effective to produce 5-hydroxymethylfurfural (HMF) from starch. H-mordenite and HZSM-5 zeolites with fewer Lewis acid sites could not cause the isomerization reaction from glucose to fructose. So, the further conversion of fructose to furfural or HMF was inhibited. The formation of HMF only depended on the acid properties of zeolites. The formation of furfural was not only determined by the acidity of zeolites, but also by their appropriate pore structure.
  • loading
  • [1]
    KARINEN R, VILONEN K, NIEMELA M. Biorefining: Heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural[J]. ChemSusChem,2011,4(8):1002−1016. doi: 10.1002/cssc.201000375
    [2]
    袁正求, 龙金星, 张兴华, 夏 莹, 王铁军, 马隆龙. 木质纤维素催化转化制备能源平台化合物[J]. 化学进展,2016,28(1):103−110. doi: 10.7536/PC150744

    YUAN Zheng-qiu, LONG Jin-xing, ZHANG Xing-hua, XIA Ying, WANG Tie-jun, MA Long-long. Catalytic conversion of lignocellulose into energy platform chemicals[J]. Prog Chem,2016,28(1):103−110. doi: 10.7536/PC150744
    [3]
    WANG Y, DING G, YANG X, ZHENG H, ZHU Y, LI Y. Selectively convert fructose to furfural or hydroxymethylfurfural on Beta zeolite: The manipulation of solvent effects[J]. Appl Catal B: Environ,2018,235:150−157. doi: 10.1016/j.apcatb.2018.04.043
    [4]
    BOZELL J J, PETERSEN G R. Technology development for the production of biobased products from biorefinery carbohydrates–the US Department of Energy’s “Top 10” revisited[J]. Green Chem,2010,12(4):539−554. doi: 10.1039/b922014c
    [5]
    郑洪岩, 王月清, 常西亮, 牛宇岚, 杨红, 宋永波, 姚英, 丁国强, 朱玉雷. Hβ分子筛催化甜高粱秆汁转化制呋喃类化合物[J]. 燃料化学学报,2019,47(5):605−610. doi: 10.3969/j.issn.0253-2409.2019.05.012

    ZHENG Hong-yan, WANG Yue-qing, CHANG Xi-liang, NIU Yu-lan, YANG Hong, SONG Yong-bo, YAO Ying, DING Guo-qiang, ZHU Yu-lei. Catalytic conversion of sweet sorghum stalk juice to furan compounds over Hβ zeolite[J]. J Fuel Chem Technol,2019,47(5):605−610. doi: 10.3969/j.issn.0253-2409.2019.05.012
    [6]
    MOREAUA C, BELGACEM M N, GANDINI A. Recent Catalytic advances in the chemistry of substituted furans from carbohydrates and in theensuing polymers[J]. Top Catal,2004,27(1/4):11−30.
    [7]
    DUTTA S, DE S, SAHA B, ALAM MD I. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels[J]. Catal Sci Technol,2012,2(10):2025−2036. doi: 10.1039/c2cy20235b
    [8]
    LANGE J P, VAN DER HEIDE E, VAN BUIJTENEN J, PRICE R. Furfural-a promising platform for lignocellulosic biofuels[J]. ChemSusChem,2012,5(1):150−166. doi: 10.1002/cssc.201100648
    [9]
    黄仲涛, 耿建铭. 工业催化[M]. 3版. 北京: 化学工业出版社, 2014, 70−71.

    HUANG Zhong-tao, GENG Jian-ming. Industrial Catalysis[M]. 3nd ed. Beijing: Chemical Industry Press, 2014, 70−71.
    [10]
    GÜRBÜZ E I, GALLO J R, ALONSO D M, WETTSTEIN S G, LIM W Y, DUMESIC J A. Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone[J]. Angew Chem Int Ed,2013,52(4):1270−1274. doi: 10.1002/anie.201207334
    [11]
    WANG Y, YANG X, ZHENG H, LI X, ZHU Y, LI Y. Mechanistic insights on catalytic conversion fructose to furfural on beta zeolite via selective carbon-carbon bond cleavage[J]. Mol Catal,2019,463:130−139.
    [12]
    CUI J, TAN J, DENG T, CUI X, ZHU Y, LI Y. Conversion of carbohydrates to furfural via selective cleavage of the carbon-carbon bond: the cooperative effects of zeolite and solvent[J]. Green Chem,2016,18(6):1619−1624. doi: 10.1039/C5GC01948F
    [13]
    KIM B, JEONG J, LEE D, KIM S, YOON H J, LEE Y S, CHO J K. Direct transformation of cellulose into 5-hydroxymethyl-2-furfural using a combination of metal chlorides in imidazolium ionic liquid[J]. Green Chem,2011,13(6):1503−1506. doi: 10.1039/c1gc15152e
    [14]
    王小艳, 秦磊, 刘辉, 李凡, 李春, 佟毅. 淀粉质燃料乙醇发酵胁迫及菌株耐受性改造[J]. 精细化工,2019,36(4):568−574.

    WANG Xiao-yan, QIN Lei, LIU Hui, LI Fan, LI Chun, TONG Yi. Research progress of starchy fuel ethanol fermentation and the tolerance of Saccharomyces cerevisiae[J]. Fine Chem,2019,36(4):568−574.
    [15]
    罗虎, 孙振江, 李永恒, 梁坤国, 许旺发. 玉米淀粉生产酒精的研究[J]. 酿酒科技,2018,(2):30−33.

    LUO Hu, SUN Zhen-jiang, LI Yong-heng, LIANG Kun-guo, XU Wang-fa. Alcohol production by corn starch[J]. Liquor-making Sci Technol,2018,(2):30−33.
    [16]
    WANG J, XI J, WANG Y. Recent advances in the catalytic production of glucose from lignocellulosic biomass[J]. Green Chem,2015,17(2):737−751.
    [17]
    YANG Y, XIANG X, TON D G, HU C, ABU-OMAR M M. One-pot synthesis of 5-hydroxymethylfurfural directly from starch over SO42−/ZrO2-Al2O3 solid catalyst[J]. Bioresource Technol,2012,116:302−306. doi: 10.1016/j.biortech.2012.03.081
    [18]
    徐如人, 庞文琴, 于吉红, 霍启升, 陈接胜. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004, 247−252.

    XU Ru-ren, PANG Wen-qin, YU Ji-hong, HUO Qi-sheng, CHEN Jie-sheng. Chemistry-Zeolites and Porous Materials[M]. Beijing: Science Press, 2004, 247−252.
    [19]
    栗同林, 刘希尧, 朴玉玲, 蔡春飞, 王祥生. 萘与不同烷基化试剂在沸石上的烷基化反应[J]. 催化学报,1998,19(2):181−183. doi: 10.3321/j.issn:0253-9837.1998.02.019

    LI Tong-lin, LIU Xi-yao, PIAO Yu-ling, CAI Chun-fei, WANG Xing-sheng. Alkylation of naphthalene with various alkylating agents over some zeolites[J]. Chin J Catal,1998,19(2):181−183. doi: 10.3321/j.issn:0253-9837.1998.02.019
    [20]
    刘萌, 吴志杰, 潘 涛. 沸石分子筛酸性质表征方法研究进展[J]. 应用化学,2020,37(1):1−15. doi: 10.11944/j.issn.1000-0518.2020.01.190199

    LIU Meng, WU Zhi-jie, PAN Tao. Recent advance in the characterization of acidic properties of zeolites[J]. Chin J Appl Chem,2020,37(1):1−15. doi: 10.11944/j.issn.1000-0518.2020.01.190199
    [21]
    YUE C, LI G, PIDKO E A, WIESFELD J J, RIGUTTO M, HENSEN E J M. Dehydration of glucose to 5-hydroxyme thylfurfural using Nb-doped tungstite[J]. ChemSusChem,2016,9(17):2421−2429.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (681) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return