Volume 49 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
ZOU Ai-hua, XU Xiao-mei, ZHOU Lang, LIN Lu-he, KANG Zhi-bing. Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1371-1378. doi: 10.1016/S1872-5813(21)60085-3
Citation: ZOU Ai-hua, XU Xiao-mei, ZHOU Lang, LIN Lu-he, KANG Zhi-bing. Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane[J]. Journal of Fuel Chemistry and Technology, 2021, 49(9): 1371-1378. doi: 10.1016/S1872-5813(21)60085-3

Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane

doi: 10.1016/S1872-5813(21)60085-3
Funds:  The project was supported by Doctoral Program of Jiangxi Province (2017KY45) , Provincial Key Research and Invention Program (20192BBE50001) and PhD Research Startup Foundation (EA201801216)
  • Received Date: 2021-02-01
  • Rev Recd Date: 2021-04-11
  • Available Online: 2021-04-27
  • Publish Date: 2021-09-30
  • Low-cost and high-performance catalyst is crucial for hydrogen generation via the hydrolysis of ammonia borane (NH3BH3, AB) as a chemical hydrogen storage material. In this work, Co-CeOx nanocomposites supported on graphene (Co-CeOx/graphene) were prepared through a facile impregnation and chemical reduction method and used as a catalyst in the hydrolytic dehydrogenation of ammonia borane. The results indicate that the as-prepared Co-CeOx/graphene nanocomposite exhibits superior catalytic activity and recycling stability in the hydrolysis of ammonia borane, owing to the ultra-fine size of Co-CeOx particles, the strong synergistic electronic effect between Co and CeOx, as well as the strong metal-support interaction between Co-CeOx and graphene. For the hydrolysis of ammonia borane over the optimized Co-CeOx/graphene catalyst, the turnover frequency (TOF) reaches 45.1 min−1, with the activation energy (Ea) of 39.5 kJ/mol; such a TOF value is 12 times and 9 times higher than those over Co and Co/graphene, respectively, also much higher than those reported for most noble-metal-free catalysts.
  • loading
  • [1]
    肖国鹏, 乔韦军, 王丽宝, 张磊, 张健, 王宏浩. LaNiO3的焙烧温度对甲醇水蒸气重整制CuO/LaNiO3催化剂的影响[J]. 燃料化学学报,2020,48(2):213−220. doi: 10.3969/j.issn.0253-2409.2020.02.011

    XIAO Guo-peng, QIAO Wei-jun, WANG Li-bao, ZHANG Lei, ZHANG Jian, WANG Hong-hao. Effect of calcination temperature of LaNiO3 on CuO/LaNiO3 catalyst for hydrogen production via methanol steam reforming[J]. J Fuel Chem Technol,2020,48(2):213−220. doi: 10.3969/j.issn.0253-2409.2020.02.011
    [2]
    ZHANG J, DONG Y N, LIU Q X, ZHOU M, MI G, DU X G. Hierarchically alloyed Pd-Cu microarchitecture with tunable shapes: Morphological engineering, and catalysis for hydrogen evolution reaction of ammonia borane[J]. Int J Hydrog Energy,2019,44(57):30226−30236. doi: 10.1016/j.ijhydene.2019.09.213
    [3]
    卢培静, 蔡夫锋, 张军, 刘予宇, 孙予罕. B改性CuZnAlOx催化剂对甲醇水蒸气重整制氢性能的研究[J]. 燃料化学学报,2019,47(7):791−798. doi: 10.3969/j.issn.0253-2409.2019.07.003

    LU Pei-jing, CAI Fu-feng, ZHANG Jun, LIU Yu-yu, SUN Yu-han. Hydrogen production from methanol steam reforming over B-modified CuZnAlOx catalysts[J]. J Fuel Chem Technol,2019,47(7):791−798. doi: 10.3969/j.issn.0253-2409.2019.07.003
    [4]
    WU H, WU M, WANG B Y, YONG X, LIU Y S, LI B J, LIU B Z, LU S Y. Interface electron collaborative migration of Co-Co3O4/carbon dots: Boosting the hydrolytic dehydrogenation of ammonia borane[J]. J Energy Chem,2020,48(9):43−53.
    [5]
    AKBAYRAK S, ÖZKAR S. Ammonia borane as hydrogen storage materials[J]. Int J Hydrog Energy,2018,43(40):18592−18606. doi: 10.1016/j.ijhydene.2018.02.190
    [6]
    FENG Y F, WANG H Z, CHEN X D, LV F, LI Y Z, ZHU Y M, XU C J, ZHANG X B, LIU H R, LI H. Simple synthesis of Cu2O-CoO nanoplates with enhanced catalytic activity for hydrogen production from ammonia borane hydrolysis[J]. Int J Hydrog Energy,2020,45(35):17164−17173. doi: 10.1016/j.ijhydene.2020.04.257
    [7]
    ZHANG H, GU X J, LIU P L, SONG J, CHENG J, SU H Q. Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride[J]. J Mater Chem A,2017,5(5):2288−2296. doi: 10.1039/C6TA08987A
    [8]
    SANYAL U, DEMIRCI U B, JAGIRDAR B R, MIELE P. Hydrolysis of ammonia borane as a hydrogen source: Fundamental issues and potential solutions towards implementation[J]. ChemSusChem,2011,4(12):1731−1739. doi: 10.1002/cssc.201100318
    [9]
    PENG S G, LIU J C, ZHANG J, WANG F Y. An improved preparation of graphene supported ultrafine ruthenium(0) NPs: Very active and durable catalysts for H2 generation from methanolysis of ammonia borane[J]. Int J Hydrog Energy,2015,40(34):10856−10866. doi: 10.1016/j.ijhydene.2015.06.113
    [10]
    YURDERI M, BULUT A, ERTAS I E, ZAHMAKIRAN M, KAYA M. Supported copper-copper oxide nanoparticles as active, stable and low-cost catalyst in the methanolysis of ammonia-borane for chemical hydrogen storage[J]. Appl Catal B: Environ,2016,186:212−212. doi: 10.1016/j.apcatb.2016.01.028
    [11]
    ZHOU L M, MENG J, LI P, TAO Z L, MAI L Q, CHEN J. Ultrasmall cobalt nanoparticles supported on nitrogen-doped porous carbon nanowires for hydrogen evolution from ammonia borane[J]. Mater Horiz,2017,4(2):268−273. doi: 10.1039/C6MH00534A
    [12]
    CHEN W Y, LI D L, WANG Z J, QIAN G, SUI Z J, DUAN X Z, ZHOU X G, YEBOAH I, CHEN D. Reaction mechanism and kinetics for hydrolytic dehydrogenation of ammonia borane on a Pt/CNT catalyst[J]. AIChE J,2017,63(1):60−65. doi: 10.1002/aic.15389
    [13]
    TONBUL Y, AKBAYRAK S, ÖZKAR S. Magnetically separable rhodium nanoparticles as catalysts for releasing hydrogen from the hydrolysis of ammonia borane[J]. J Colloid Interface Sci,2019,553:581−587. doi: 10.1016/j.jcis.2019.06.038
    [14]
    AKBAYRAK S, TONBUL, Y, ÖZKAR S. Ceria supported rhodium nanoparticles: Superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane[J]. Appl Catal B: Environ,2016,198:162−170. doi: 10.1016/j.apcatb.2016.05.061
    [15]
    ZOU H T, ZHANG S L, HONG X L, YAO Q L, LUO Y, LU Z H. Immobilization of Ni-Pt nanoparticles on MIL-101/rGO composite for hydrogen evolution from hydrous hydrazine and hydrazine borane[J]. J Alloy Compd,2020,835:155426. doi: 10.1016/j.jallcom.2020.155426
    [16]
    YAO Q L, SHI W M, FENG G, LU Z H, ZHANG X L, TAO D J, KONG D J, CHEN X S. Ultrafine Ru nanoparticles embedded in SiO2 nanospheres: Highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. J Power Sources,2014,257:293−299. doi: 10.1016/j.jpowsour.2014.01.122
    [17]
    DU X Q, TAN S Y, CAI P, LUO W, CHENG G Z. A RhNiP/rGO hybrid for efficient catalytic hydrogen generation from an alkaline solution of hydrazine[J]. J Mater Chem A,2016,4(38):14572−14576. doi: 10.1039/C6TA05917A
    [18]
    ZHANG H, GU X J, SONG J. Co, Ni-based nanoparticles supported on graphitic carbon nitride nanosheets as catalysts for hydrogen generation from the hydrolysis of ammonia borane under broad-spectrum light irradiation[J]. Int J Hydrog Energy,2020,45(41):21273−211286. doi: 10.1016/j.ijhydene.2020.05.178
    [19]
    LIANG Z J, XIAO X Z, YU X Y, HUANG X, JIANG Y Q, FAN X L, CHEN L X. Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane[J]. J Alloy Compd,2018,741:501−508. doi: 10.1016/j.jallcom.2017.12.151
    [20]
    WANG Q T, ZHANG F F, DU F L, LIU T. A cost effective cobalt nickel nanoparticles catalyst with exceptional performance for hydrolysis of ammonia-borane[J]. J Nanosci Nanotechnol,2017,17(12):9333−9338. doi: 10.1166/jnn.2017.14331
    [21]
    YANG Y W, FENG G, LU Z H, HU N, ZHANG F, CHEN X S. In situ synthesis of reduced graphene oxide supported Co nanoparticles as efficient catalysts for hydrogen generation from NH3BH3[J]. Acta Phys-Chim Sin,2014,30(6):1180−1186. doi: 10.3866/PKU.WHXB201404141
    [22]
    YANG Y W, ZHANG F, WANG H L, YAO Q L, CHEN X S, LU Z H. Catalytic hydrolysis of ammonia borane by cobalt nickel nanoparticles supported on reduced graphene oxide for hydrogen generation[J]. J Nanomater,2014,1−9.
    [23]
    ZHANG Z J, LU Z H, TAN H L, CHEN X S, YAO Q L. CeOx-modified RhNi nanoparticles grown on rGO as highly efficient catalysts for complete hydrogen generation from hydrazine borane and hydrazine[J]. J Mater Chem A,2015,3(46):23520−23529. doi: 10.1039/C5TA06197K
    [24]
    DU X Q, LIU C, DU C, CAI P, CHENG G Z, LUO W. Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature[J]. Nano Res,2017,10(8):2856−2865. doi: 10.1007/s12274-017-1494-6
    [25]
    CAO N, LUO W, CHENG G Z. One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Int J Hydrog Energy,2013,38(27):11964−11972. doi: 10.1016/j.ijhydene.2013.06.125
    [26]
    UZUNDURUKAN A, DEVRIM Y. Carbon nanotube-graphene hybrid supported platinum as an effective catalyst for hydrogen generation from hydrolysis of ammonia borane[J]. Int J Hydrog Energy,2019,44(49):26773−26782. doi: 10.1016/j.ijhydene.2019.08.153
    [27]
    FERNANDE R, PATEL N, MIOTELLO A, JAISWAL R, KOTHARI D C. Dehydrogenation of ammonia borane with transition metal-doped Co-B alloy catalysts[J]. Int J Hydrog Energy,2012,37(3):2397−2406. doi: 10.1016/j.ijhydene.2011.10.119
    [28]
    YAO Q L, LU Z H, WEI H, CHEN X S, ZHU J. Highly Pt-like activity of Ni-Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane[J]. J Mater Chem A,2016,4(22):8579−8583. doi: 10.1039/C6TA02004F
    [29]
    YAN J M, ZHANG X B, HAN S, SHIOYAMA H, XU Q. Iron-nanoparticle-catalyzed hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage[J]. Angew Chem Int Ed,2008,47(12):2287−2289. doi: 10.1002/anie.200704943
    [30]
    MCINTYRE N S, JOHNSTON D D, COATSWORTH L L, DAVIDSON R D. X‐ray photoelectron spectroscopic studies of thin film oxides of cobalt and molybdenum[J]. Surf Interface Anal,1990,15(4):265−272. doi: 10.1002/sia.740150406
    [31]
    ZHU F F, CHEN G Z, SUN S X, SUN X. In situ growth of Au@CeO2 core-shell nanoparticles and CeO2 nanotubes from Ce(OH)CO3 nanorods[J]. J Mater Chem A,2013,1(2):288−294. doi: 10.1039/C2TA00293K
    [32]
    YAO Q L, SHI Y, ZHANG X L, CHEN X S, LU Z H. Facile synthesis of platinum–cerium(IV) oxide hybrids arched on reduced graphene oxide catalyst in reverse micelles with high activity and durability for hydrolysis of ammonia borane[[J]. Chem-Asian J,2016,11(22):3251−3257. doi: 10.1002/asia.201601147
    [33]
    AKBAYRAK S, TANEROĞLU O, ÖZKAR S. Nanoceria supported cobalt(0) nanoparticles: a magnetically separable and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane[J]. New J Chem,2017,41(14):6546−6552. doi: 10.1039/C7NJ01035D
    [34]
    LIU P L, GU X J, KANG K, ZHANG H, CHENG J, SU H Q. Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal-organic frameworks[J]. ACS Appl Mater Interfaces,2017,9(12):10759−10767. doi: 10.1021/acsami.7b01161
    [35]
    YANG L, SU J, MENG X Y, LUO W, CHENG G Z. In situ synthesis of graphene supported Ag@CoNi core-shell nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane[J]. J Mater Chem A,2013,1(34):10016−10023. doi: 10.1039/c3ta11835e
    [36]
    MEN Y N, SU J, HUANG C Z, LIANG L J, CAI P, CHENG G Z, LUO W. Three-dimensional nitrogen-doped graphene hydrogel supported Co-CeOx nanoclusters as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane[J]. Chin Chem Lett,2018,29:1671−1674. doi: 10.1016/j.cclet.2018.04.009
    [37]
    YANG L, CAO N, DU C, DAI H M, HU K, LUO W, CHENG G Z. Graphene supported cobalt(0) nanoparticles for hydrolysis of ammonia borane[J]. Mater Lett,2014,115:113−116. doi: 10.1016/j.matlet.2013.10.039
    [38]
    YANG L, LUO W, CHENG G Z. Graphene-supported Ag-based core-shell nanoparticles for hydrogen generation in hydrolysis of ammonia borane and methylamine borane[J]. Appl Mater Interfaces,2013,5(16):8231−8240. doi: 10.1021/am402373p
    [39]
    MENG X Y, YANG L, CAO N, DU C, HU K, SU J, LUO W, CHENG G Z. Graphene-supported trimetallic core-shell Cu@CoNi nanoparticles for catalytic hydrolysis of amine borane[J]. Chem Plus Chem,2014,79(2):325−332. doi: 10.1002/cplu.201300336
    [40]
    KANTÜRK F A. Dehydrogenation characteristics of ammonia borane via boron-based catalysts (Co-B, Ni-B, Cu-B) under different hydrolysis conditions[J]. Int J Hydrog Energy,2013,38(22):9186−9197. doi: 10.1016/j.ijhydene.2013.05.081
    [41]
    YAO Q L, LU Z H, YANG Y W, CHEN Y Z, CHEN X S, JIANG H L. Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane[J]. Nano Res,2018,11:4412−4422. doi: 10.1007/s12274-018-2031-y
    [42]
    XU Q, CHANDRA M. Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature[J]. J Power Sources,2006,163(1):364−370. doi: 10.1016/j.jpowsour.2006.09.043
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2290) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return