Volume 49 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
PI Qi-feng, ZHU Yu-ting, LÜ Wei, LIAO Yu-he, WANG Chen-guang, MA Long-long. Low temperature pretreatment of poplar using deep eutectic solvent and the structural evolution of three components of poplar[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1791-1801. doi: 10.1016/S1872-5813(21)60086-5
Citation: PI Qi-feng, ZHU Yu-ting, LÜ Wei, LIAO Yu-he, WANG Chen-guang, MA Long-long. Low temperature pretreatment of poplar using deep eutectic solvent and the structural evolution of three components of poplar[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1791-1801. doi: 10.1016/S1872-5813(21)60086-5

Low temperature pretreatment of poplar using deep eutectic solvent and the structural evolution of three components of poplar

doi: 10.1016/S1872-5813(21)60086-5
Funds:  The project was supported by National Key R & D Program of China (2018YFB11504) and R & D Plan of Key Fields in Guangdong Province (2020B1111570001)
  • Received Date: 2021-03-15
  • Rev Recd Date: 2021-04-12
  • Available Online: 2021-04-27
  • Publish Date: 2021-12-29
  • In this work, the impacts of ChCl/carboxylic acids, molar ratios of hydrogen bond acceptors to donors, pretreatment temperature and time on the delignification of poplar were investigated. Characteristic methods including XRD, FT-IR, GPC, and HSQC were used to analyze the solid residue and extracted lignin for the study of the structural evolution of the three components. The results showed that under low temperature of 90 ℃, the delignification of poplar wood was 91% with ChCl/FA pretreatment. About 63% of lignin was collected and the purity of lignin was 90%. Over 98% cellulose remained intact with Iβ type crystal form, and the crystallinity was 70%. The β−O−4 bond content of extracted lignin was 84.8% (71% of the original β−O−4 bond), and Mn of the lignin was 1400, suggesting the extracted lignin to be an ideal raw material for monophenlics production.
  • loading
  • [1]
    SATLEWAL A, AGRAWAL R, BHAGIA S, SANGORO J, RAGAUSKAS A J. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities[J]. Biotechnol Adv,2018,36(8):2032−2050. doi: 10.1016/j.biotechadv.2018.08.009
    [2]
    PU Y Q, JIANG N, RAGAUSKAS A J. Ionic liquid as a green solvent for lignin[J]. J Wood Chem Technol,2007,27(1):23−33. doi: 10.1080/02773810701282330
    [3]
    王东玲, 王文锦, 彭梓芳, 徐莹, 刘建国, 王海永, 王晨光, 张琦, 马隆龙. 醇溶剂提取松木木质素及其结构表征[J]. 化工学报,2020,71(8):3761−3769.

    WANG Dong-ling, WANG Wen-Jin, PENG Zi-fang, XU Ying, LIU Jian-guo, Wang Hai-yong, WANG Chen-guang, ZHANG Qi, MA Long-long. Structure characterization of pine lignin extracted by different alcohol solvents[J]. CIESC J,2020,71(8):3761−3769.
    [4]
    李佳慧, 胡嘉, 赵荣祥, 乔海燕, 李秀萍. 氯化胆碱 /草酸型低共熔溶剂氧化脱除模拟油硫化物[J]. 燃料化学学报,2014,42(7):870−876.

    LI Jia-hui, HU Jia, ZHAO Rong-xiang, QIAO Hai-yan, LI Xiu-ping. Oxidative desulfurization of model oil with choline chloride /oxalic acid as a eutectic solvent[J]. J Fuel Chem Technol,2014,42(7):870−876.
    [5]
    ABBOTT A P, CAPPER G, DAVIES D L, RASHEED R K, TAMBYRAJAH V. Novel solvent properties of choline chloride/urea mixtures[J]. Chem Commun,2003,(1):70−71. doi: 10.1039/b210714g
    [6]
    LIU Y Z, CHEN W S, XIA Q, GUO B T, WANG Q W, LIU S X, LIU Y X, LI J, YU H P. Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent[J]. ChemSusChem,2017,10(8):1692−1700. doi: 10.1002/cssc.201601795
    [7]
    CHEN Z, RAGAUSKAS A, WAN C X. Lignin extraction and upgrading using deep eutectic solvents[J]. Ind Crops Prod,2020,147:1−8.
    [8]
    PROCENTESE A, JOHNSON E, ORR V, CAMPANILE A G, WOOD J A, MARZOCCHELLA A, REHMANN L. Deep eutectic solvent pretreatment and subsequent saccharification of corncob[J]. Bioresour Technol,2015,192:31−36. doi: 10.1016/j.biortech.2015.05.053
    [9]
    LOU R, MA R S, LIN K T, AHAMED A, ZHANG X. Facile extraction of wheat straw by deep eutectic solvent (des) to produce lignin nanoparticles[J]. ACS Sustainable Chem Eng,2019,7(12):10248−10256.
    [10]
    KUMAR S, SHARMA S, ARUMUGAN S M, MIGLANI C, ELUMALAI S. Biphasic separation approach in the des biomass fractionation facilitates lignin recovery for subsequent valorization to phenolics[J]. ACS Sustainable Chem Eng,2020,8(51):19140−19154. doi: 10.1021/acssuschemeng.0c07747
    [11]
    WEN J L, SUN S L, XUE B L, SUN R C. Quantitative structural characterization of the lignins from the stem and pith of bamboo (Phyllostachys pubescens)[J]. Holzforschung,2013,67(6):613−627. doi: 10.1515/hf-2012-0162
    [12]
    LEE S H, DOHERTY T V, LINHARDT R J, DORDICK J S. Ionic liquid–mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis[J]. Biotechnol Bioeng,2009,102(5):1368−1376. doi: 10.1002/bit.22179
    [13]
    CHEN Z, WAN C X. A novel deep eutectic solvent/acetone biphasic system for high-yield furfural production[J]. Bioresour Technol Rep,2019,8:1−4.
    [14]
    ZHU Y T, LIAO Y H, LV W, LIU J, SONG X B, CHEN L G, WANG C G, SELS B F, MA L L. Complementing vanillin and cellulose production by oxidation of lignocellulose with stirring control[J]. ACS Sustainable Chem Eng,2020,8(6):2361−2374.
    [15]
    CHEN L H, DOU J Z, MA Q L, LI N, WU R C, BIAN H Y, YELLE D J, VUORINEN T, FU S Y, PAN X J, ZHU J Y. Rapid and near-complete dissolution of wood lignin at ≤ 80 ℃ by a recyclable acid hydrotrope[J]. Sci Adv,2017,3:e1701735. doi: 10.1126/sciadv.1701735
    [16]
    BANERJEE B, SEN R, PANDEY R A, CHAKRABARTI T, SATPUTE D, GIRI B S, MUDLIAR S. Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization[J]. Biomass Bioenergy,2009,33(12):1680−1686. doi: 10.1016/j.biombioe.2009.09.001
    [17]
    常国璋, 谢建军, 杨会凯, 黄艳琴, 阴秀丽, 吴创之. 棕榈壳酶解–温和酸解木质素的结构及热解特性研究[J]. 燃料化学学报,2016,44(10):1664−1671.

    CHANG Guo-zhang, XIE Jian-jun, YANG Hui-kai, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Structure and pyrolysis characteristics of enzymatic/mild acidolysis lignin isolated from palm kernel shell[J]. J Fuel Chem Technol,2016,44(10):1664−1671.
    [18]
    SCHWANNINGER M, RODRIGUES J C, PEREIRA H, HINTERSOISSER B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose[J]. Vib Spectrosc,2004,36(1):23−40. doi: 10.1016/j.vibspec.2004.02.003
    [19]
    SUJIYAMA J, VUONG R, CHANZY H. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall[J]. Macromolecules,1991,24:4168−4175. doi: 10.1021/ma00014a033
    [20]
    FAIX O. Classification of lignins from different botanical origins by FT-IR spectroscopy[J]. Holzforschung,1991,45:21−27. doi: 10.1515/hfsg.1991.45.s1.21
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1865) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return