Volume 49 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
LEE Roh Pin, SEIDL Ludwig Georg, HUANG Qiu-liang, MEYER Bernd. An analysis of waste gasification and its contribution to China’s transition towards carbon neutrality and zero waste cities[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1057-1076. doi: 10.1016/S1872-5813(21)60093-2
Citation: LEE Roh Pin, SEIDL Ludwig Georg, HUANG Qiu-liang, MEYER Bernd. An analysis of waste gasification and its contribution to China’s transition towards carbon neutrality and zero waste cities[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1057-1076. doi: 10.1016/S1872-5813(21)60093-2

An analysis of waste gasification and its contribution to China’s transition towards carbon neutrality and zero waste cities

doi: 10.1016/S1872-5813(21)60093-2
Funds:  The project was supported by the German Federal Ministry of Education (BMBF) (01LN1713A)
More Information
  • Corresponding author: E-mail: roh-pin.lee@iec.tu-freiberg.de
  • Received Date: 2021-03-05
  • Rev Recd Date: 2021-04-16
  • Available Online: 2021-05-12
  • Publish Date: 2021-08-31
  • Waste gasification has the potential to contribute to China’s transition towards carbon neutrality and zero waste cities via the recirculation of waste as secondary carbon feedstock for the production of chemicals with lower/and or zero carbon footprint, green hydrogen with zero carbon footprint and CO2-neutral synthetic liquid fuels. With China’s significant coal gasification capacity and associated experiences and expertise, Coal-to-X could act as a bridge to Waste-to-X for carbon intensive sectors such as the waste management, chemical production and mobility sectors. To illustrate the opportunities in these areas, this article presented highlights from dynamic global developments in waste gasification, focusing on pioneering industrial developments in Germany between 1980−2000’s as well as current international developments. Lessons learnt from previous and current waste gasification project deployment are shared and enabled the identification of problems which will have to be addressed in the transition from coal gasification towards mono-waste gasification technologies. Additionally, a qualitative evaluation of gasification technologies pointed to the strengths and weaknesses of fixed-bed, fluidized-bed and entrained-flow gasification principles in their application for waste gasification.
  • for more information about the HTW gasification technology and its application in Berrenrath and others, please refer to[25-28].
    for more information on the Lurgi FBDB technology and its application in SVZ Schwarze Pumpe, please refer to[29-31].
    for more information on the BGL technology and its application in SVZ Schwarze Pumpe, please refer to[27, 32, 33].
    for more information on the GSP technology and its application in SVZ Schwarze Pumpe, please refer to[22, 27, 30, 34].
    for more information on the Ebara UBE Process and its commercial applications, please refer to[41-44].
    for more information on the Enerkem gasification technology and its commercial applications, refer to[45-51].
    for more information on the TRI process and its commercial applications, please refer to[52-54].
    for more information on InEnTec and the commercialization of its PEM process, please refer to[55, 56].
    for more information about the FastOx technology from Sierra Energy and its commercial applications, please refer to[57-60].
    Insights by Prof. Bernd Meyer from first-hand experience with operations at the HTW demonstration plant in Berrenrath (then as head of the R&D division for waste gasification at Rheinbraun AG between 1989 to 1994) as well as from the operations at SVZ Schwarze Pumpe (then as chief technology consultant for SVZ Schwarze Pumpe between 1994 to 2007).
    The objective of the generalized evaluation is to present readers with first insights into the issues which would be associated and must be addressed for waste gasification via different gasification principles. Note that the performance of specific gasification technologies may differ from this generalized and qualitative evaluation.
  • loading
  • [1]
    SCHEITHAUER M, MAMANI SOLIZ PE, LEE RP, KELLER F, MEYER B, BUI X-N, HUONG TTT. Assessment of feasible and effective technologies for the chemical utilization of domestic coal for value-added production in vietnam[A]//Proceedings of the international conference on innovations for sustainable and responsible mining[C]. Cham: Springer International Publishing, 2021, 364–384.
    [2]
    VAMVUKA D. Gasification of coal[J]. Energy Exploration & Exploitation,1999,17:515−581. doi: 10.1177/014459879901700603
    [3]
    U. S. DEPARTMENT OF ENERGY, NATIONAL ENERGY TECHNOLOGY LABORATORY. 12.3. Types of coal-derived chemicals[EB]. https://netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/coal-derived-chem, 2021-02-25/2021-02-25.
    [4]
    Global Syngas Technologies Council. The gasification industry[DB]. https://www.globalsyngas.org/resources/the-gasification-industry/, 2021-02-25/2021-02-25.
    [5]
    LEE RP, MEYER B, HUANG Q, VOSS R. Sustainable waste management for zero waste cities in China: potential, challenges and opportunities[J]. Clean Energy,2020,4:169−201. doi: 10.1093/ce/zkaa013
    [6]
    Ministry of Housing and Urban-Rural Development of The People’s Republic of China. Statistical yearbooks of urban and rural construction [DB]. http://www.mohurd.gov.cn/xytj/tjzljsxytjgb/jstjnj/index.html, 2021-02-25/2021-02-25.
    [7]
    LEE RP, KELLER F, MEYER B. A concept to support the transformation from a linear to circular carbon economy: net zero emissions, resource efficiency and conservation through a coupling of the energy, chemical and waste management sectors[J]. Clean Energy,2017,1:102−113. doi: 10.1093/ce/zkx004
    [8]
    ZERO WASTE EUROPE. The impact of waste-to-energy incineration on climate: Policy briefing[DB]. https://zerowasteeurope.eu/wp-content/uploads/edd/2019/09/ZWE_Policy-briefing_The-impact-of-Waste-to-Energy-incineration-on-Climate.pdf, 2019-09/2021-02-25.
    [9]
    MCGRATH M. Climate change: China aims for ‘carbon neutrality by 2060’[EB]. https://www.bbc.com/news/science-environment-54256826, 2020-09-22/2021-02-25.
    [10]
    YE M, ZHU W, XU Z, LIU Z. Coordinated development of coal chemical and petrochemical industries in China[J]. Bull Chin Acad Sci,2019,34:417−425.
    [11]
    FLANDERS. Petrochemical and chemical industry in china[R]. Investment & Trade Market Survey. https://www.flandersinvestmentandtrade.com/export/sites/trade/files/market_studies/CHINAS%20PETROCHEMICAL%20AND%20CHEMICAL%20INDUSTRY%20V3.pdf, 2015-11/2021-02-25.
    [12]
    National Bureau of Statistics. Statistical yearbooks[DB]. https://data.stats.gov.cn/easyquery.htm?cn=C01, 2021-02-25/2021-02-25.
    [13]
    LIN B, LONG H. Emissions reduction in China’s chemical industry-based on LMDI[J]. Renewable Sustainable Energy Rev,2016,53:1348−1355. doi: 10.1016/j.rser.2015.09.045
    [14]
    ZHANG Y, YUAN Z, MARGNI M, BULLE C, HUA H, JIANG S, LIU X. Intensive carbon dioxide emission of coal chemical industry in China[J]. Appl Energy,2019,236:540−550. doi: 10.1016/j.apenergy.2018.12.022
    [15]
    STATISTA. Carbon dioxide emissions from fossil fuel and industrial purposes in China from 1970 to 2019[DB]. https://www.statista.com/statistics/486008/co2-emissions-china-fossil-fuel-and-industrial-purposes/, 2020-10-30/2021-03-01.
    [16]
    JOHNSON J H. Automotive emissions[A]. // WATSON A Y, BATES R R, KENNEDY D. Air pollution, the automobile, and public health[C]. Washington (DC): National Academies Press (US), 1988, 39–77.
    [17]
    Ministry of Ecology and Environment of The People’s Republic of China. The People’s Republic of China second biennial update report on climate change [DB]. https://unfccc.int/sites/default/files/resource/China%202BUR_English.pdf, 2018-12/2021-02-25.
    [18]
    LIU Y, YANG S, LIU X, GUO P, ZHANG K. Driving forces of temporal-spatial differences in CO2 emissions at the city level for China’s transport sector[J]. Environ Sci Pollut Res Int,2021,28:25993−26006. doi: 10.1007/s11356-020-12235-4
    [19]
    DUDLEY D. China is set to become the world’s renewable energy superpower[EB]. https://www.forbes.com/sites/dominicdudley/2019/01/11/china-renewable-energy-superpower/?sh=3ebe5b35745a, 2019-01-11/2021-02-25.
    [20]
    U. S. Department of Energy, National Energy Technology Laboratory. China gasification database[DB]. https://netl.doe.gov/research/coal/energy-systems/gasification/gasification-plant-databases/china-gasification-database, 2014-07/2021-02-25.
    [21]
    MINCHENER A. Challenges and opportunities for coal gasification in developing countries[Z]. London: IEA Clean Coal Centre, 2013.
    [22]
    GRÄBNER M. Industrial Coal Gasification Technologies Covering Baseline and High-Ash Coal[M]. Weinheim: Wiley-VCH, 2015.
    [23]
    HIGMAN C, VAN DER BURGT M. Gasification. burlington: elsevier science, 2011.
    [24]
    MATERAZZI M. Clean Energy from Waste: Fundamental Investigations on Ashes and Tar Behaviours in a Two Stage Fluid Bed-Plasma Process for Waste Gasification[M]. Cham: Springer International Publishing, 2017.
    [25]
    ABRAHAM R, DEUTSCH M, LÜTGE C, ADLHOCH W, MITTELSTÄDT A, RENZENBRINK W, WISCHNEWSKI R. Use of the precon process with integrated HTW-gasification for household refuse recycling in japan[J]. Braunkohle,1999,51:689−691.
    [26]
    Adlhoch W. Beiträge zur DGMK-Fachbereichstagung "Energetische und Stoffliche Nutzung von Abfällen und Biomassen": 10.-12. April 2000 in Velen/Westf (Autorenmanuskripte). Hamburg: Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle, 2000.
    [27]
    SCHMALFELD J. Die Veredlung und Umwandlung von Kohle: Technologien und Projekte 1970 bis 2000 in Deutschland[Z]. Hamburg: DGMK, 2008.
    [28]
    RADTKE K. ThyssenKrupp uhde’s PRENFLO® and HTWTM gasification technologies: global update on technology and projects[C]//Gasification Technologies Conference 2011. San Francisco, California, 2011-10-09.
    [29]
    HIGMAN C. State of the gasification industry: worldwide gasification and syngas databases: 2016 update[C]//Gasification & Syngas Technologies Conference. Vancouver, 2016-10-19.
    [30]
    KAMKA F, JOCHMANN A. Ressourcen effizient erkunden, gewinnen, aufbereiten, nutzen und recyceln: Rohstoffliches Recycling von kohlenstoffhaltigen Abfällen[C]//68. BHT - Freiberger Universitätsforum. Freiberg, 2017-06-09.
    [31]
    LEE RP, LAUGWITZ A, MEHLHOSE F, MEYER B. Waste gasification: Key technology for closing the carbon cycle: coupling the energy, chemical and recycling sectors[C]//9th International Freiberg Conference. Berlin, 2018-06-03.
    [32]
    SANDER H-J, DARADIMUS G, HIRSCHFELDER H. Operating results of the BGL gasifier at Schwarze Pumpe[C]//Gasification Technologies. San Francisco, 2003-10-12.
    [33]
    BUTTKER B, GIERING R, SCHLOTTER U, HIMMELREICH B, WITTSTOCK K. Full scale industrial recovery trials of shredder residue in a high temperature slagging-bed gasifier in germany[Z]. Brussels: PlasticsEurope, 2005.
    [34]
    OBERMEIER T, FINDEISEN H, MARKOWSKI J. Forderungen an die Qualität von Einsatzmaterial für die Vergasung im SVZ Schwarze Pumpe[A]. // Thomé-Kozmiensky KJ. Ersatzbrennstoffe[C]. Neuruppin: TK Verlag Karl Thomé-Kozmiensky, 2002, 1–11.
    [35]
    MEYER B, LEE R P, REINMÖLLER M. Chemical recycling: A key building block in the transition towards zero-waste cities[C]//taiyuan energy low carbon development forum. Taiyuan, 2019-10-23.
    [36]
    BUTTKER B, OBERMEIER T. Methanol aus Klärschlamm: Das Konzept der SVZ Schwarze Pumpe GmbH[A]. // Thomé-Kozmiensky KJ. Technik, Wirtschaft, Umweltschutz. Verantwortungsbewusste Klärschlammverwertung[C]. Neuruppin: TK Verlag Karl Thomé-Kozmiensky, 2001, 667–686.
    [37]
    Kunststoff Web. Sustec: Schwarze Pumpe will keinen Abfall mehr [EB]. https://www.kunststoffweb.de/branchen-news/sustec_schwarze_pumpe_will_keinen_abfall_mehr_t208261, 2007-06-08/2021-02-25.
    [38]
    LEE R P, WOLFERSDORF C, KELLER F, MEYER B. Towards a closed carbon cycle and achieving a circular economy for carbonaceous resources - Net zero emissions, resource efficiency and resource conservation through coupling of the energy, chemical and recycling sectors[J]. Erdöl, Erdgas, Kohle-Oil Gas European Magazine,2017,43:76−77.
    [39]
    European Commission. Communication from the Commission to the European Parliment, the European Council, the Council, the European Economic and Social Committe and the Committe of the Regions[EB]. The European Green Deal. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN, 2019-12-11/2021-02-25.
    [40]
    European Commission. EU circular economy action plan: A new circular economy action plan for a cleaner and more competitive europe [EB]. https://ec.europa.eu/environment/circular-economy/, 2020/2021-02-25.
    [41]
    WALDHEIM L. Gasification of waste for energy carriers: A review[Z]. Netherlands: IEA Bioenergy, 2018.
    [42]
    FUJIMURA H, HIRAYAMA Y, FUJINAMI S, TAKANO K, IRIE M, HIROSE T, NAGATO S, OSHITA T, FUKUDA T. Method for treating wastes by gasification: US, US5900224A[P]. 1999-05-04.
    [43]
    BAILEY M P. Showa Denko completes expansion for plastic-based ammonia project[EB]. https://www.chemengonline.com/showa-denko-completes-expansion-plastic-based-ammonia-project/, 2015-07-02/2021-02-12.
    [44]
    JGC CORPORATION, EBARA ENVIRONMENTAL PLANT CO., LTD., UBE INDUSTRIES, LTD., SHOWA DENKO K. K. Start of the study on collaboration for promotion of gasification chemical recycling of plastic waste[DB]. https://www.sdk.co.jp/english/news/2019/37672.html, 2019-08-28/2021-02-12.
    [45]
    Port of Rotterdam. From waste-to-chemicals to waste-to-jet. https://www.portofrotterdam.com/en/news-and-press-releases/from-waste-to-chemicals-to-waste-to-jet, 2021-06-08/2021-08-09.
    [46]
    CHORNET E, VALSECCHI B, DROLET G, GAGNON M, NGUYEN B. Production and conditioning of synthesis gas obtained from biomass: US, US20100051875A1[P]. 2010-03-04.
    [47]
    LAVOIE J-M, MARIE-ROSE S, LYNCH D. Non-homogeneous residual feedstocks to biofuels and chemicals via the methanol route[J]. Biomass Conv Bioref,2013,3:39−44. doi: 10.1007/s13399-012-0050-6
    [48]
    MARIE-ROSE SC, CHORNET E, LYNCH D, LAVOIE J-M. From biomass-rich residues into fuels and green chemicals via gasification and catalytic synthesis[A]//Energy and Sustainability III[C]. Southampton, UK: WIT Press, 2011, 123–132.
    [49]
    DEMETRA A T, CASTALDI M J. The effects of non-recycled plastic (nrp) on gasification: a quantitative assessment[R]. https://plastics.americanchemistry.com/NRP-Gasification-Report.pdf, 2018-04-30/2021-02-25.
    [50]
    FOUCAULT M, CRETE J-P, DROLET G, FOULET M, DENOMME L, VALSECCHI B. Production of synthesis gas from gasifying and reforming carbonaceous materials: WO, WO2020/206538[P]. 2020-10-15.
    [51]
    VIERHOUT R. Biofuels and chemicals from mixed waste: the ENERKEM contribution to sustainability and circular economy[C]//9th Stakeholder Plenary Meeting - European Technology and Innovation Platform Bioenergy. Brussels, 2019-11-20.
    [52]
    ThermoChem Recovery International, inc. advanced syngas production for fuels, chemicals and power[C]//2nd EU-India Conference on Advanced Biofuels. New Delhi, 2019-03-11.
    [53]
    CHANDRAN R, NEWPORT D. The alternative route[R]. https://tri-inc.net/2017/03/28/the-alternative-route/, 2017-03/2021-02-12.
    [54]
    WHITTY K, BALDWIN R. Country update: Biomass gasification in the USA[DB]. http://task33.ieabioenergy.com/content/participants/country_reports, 2019-11-25/2021-02-12.
    [55]
    SURMA J. Conversion of municipal solid waste into clean energy products using the inentec plasma enhanced melter®[C]//California Bioresources Alliance 7th Annual Symposium. Sacramento, California, 2012-09-11.
    [56]
    INENTEC I N C. Deployed PEM technology[DB]. https://inentec.com/pem-technology/deployed-pem-technology/, 2021-02-12/2021-02-12.
    [57]
    CORBETT M J, JASBINZEK J, KASTEN C J. Tuyere for oxygen blast furnace/converter system: WO, WO2007130362A2[P]. 2007-11-15.
    [58]
    CLAFFIN H B, JASBINZEK J. Blast furnace with narrowed top section and method of using: US, US6030430A[P]. 2000-02-29.
    [59]
    Sierra Energy. FastOx pathfinder: A new future for waste[EB]. https://sierraenergy.com/wp-content/uploads/2020/05/Pathfinder-One-Sheet.pdf, 2020-05/2021-02-25.
    [60]
    Sierra Energy. Fort Hunter Liggett project: waste reduction and electricity generation using FastOx® gasification at U. S. army garrison [EB]. https://sierraenergy.com/wp-content/uploads/2020/05/FHL-One-Sheet.pdf, 2020-05/2021-02-12.
    [61]
    LEE R P, MEYER B. Synthesegas aus schwer verwertbaren Abfällen[J]. Umweltmagazin,2019,9:36−39.
    [62]
    THOMAS K, EBERHARD M. Country report Germany: Task 33 Thermal gasification of biomass[C]//onlineworkshop, 2020-11-19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1046) PDF downloads(118) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return