Volume 49 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
ZHOU Wen-bo, NIU Sheng-li, WANG Jun, LI Ying, HAN Kui-hua, WANG Yong-zheng, LU Chun-mei, ZHU Ying. Study on the adsorption and oxidation mechanism of mercury by HCl over γ-Fe2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1716-1723. doi: 10.1016/S1872-5813(21)60098-1
Citation: ZHOU Wen-bo, NIU Sheng-li, WANG Jun, LI Ying, HAN Kui-hua, WANG Yong-zheng, LU Chun-mei, ZHU Ying. Study on the adsorption and oxidation mechanism of mercury by HCl over γ-Fe2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2021, 49(11): 1716-1723. doi: 10.1016/S1872-5813(21)60098-1

Study on the adsorption and oxidation mechanism of mercury by HCl over γ-Fe2O3 catalyst

doi: 10.1016/S1872-5813(21)60098-1
Funds:  The project was supported by the Important Project in the Scientific Innovation of Shandong Province (2019JZZY020305).
  • Received Date: 2021-03-26
  • Rev Recd Date: 2021-04-28
  • Available Online: 2021-05-18
  • Publish Date: 2021-11-30
  • The mechanism of adsorption and oxidation of Hg0 by HCl on γ-Fe2O3 surface was investigated by density functional theory (DFT) calculation. The adsorption models of Hg0, HCl, HgCl and HgCl2 on γ-Fe2O3(001) surface were constructed, and the reaction mechanism of catalytic oxidation of Hg0 by HCl on γ-Fe2O3 surface was analyzed. The results illustrate that the Hg0 tends to be chemically adsorbed at Feoct site. HCl can be dissociated and adsorbed on the surface of the catalyst to form adsorbed Cl and hydroxyl groups, and promote the adsorption of Hg0. HgCl can be molecularly chemisorbed upon γ-Fe2O3(001) and act as an intermediate. HgCl2 tends to be adsorbed in parallel on the surface of γ-Fe2O3. HCl oxidizes Hg0 on γ-Fe2O3(001) following the L-H mechanism: chemically adsorbed Hg0 reacts with dissociatively adsorbed HCl. By measuring the energy distribution of the reaction path, the oxidation process of Hg0 on the surface of γ-Fe2O3 was studied. The heterogeneous oxidation of Hg0 by HCl proceeds on a two-step reaction pathway: Hg0(ads)→HgCl(ads)→HgCl2(ads).
  • loading
  • [1]
    LIU J, QU W, ZHENG C G. Theoretical studies of mercury-bromine species adsorption mechanism on carbonaceous surface[J]. Proc Combust Inst,2013,34(2):2811−2819. doi: 10.1016/j.proci.2012.07.028
    [2]
    杨应举, 张艾嘉, 刘晶, 王震, 余颖妮. NO对铜-锰尖晶石脱汞性能的影响机理[J]. 燃料化学学报,2020,48(12):1461−1465. doi: 10.3969/j.issn.0253-2409.2020.12.007

    YANG Ying-ju, ZHANG Ai-jia, LIU Jing, WANG Zhen, YU Ying-ni. Effect of NO on the performance of Cu-Mn spinel sorbent in the removal of Hg0 from flue gas[J]. J Fuel Chem Technol,2020,48(12):1461−1465. doi: 10.3969/j.issn.0253-2409.2020.12.007
    [3]
    KRABBENHOFT D P, SUNDERLAND E M. Global change and mercury[J]. Science,2013,341(6153):1457−1458.
    [4]
    辛凤, 魏书洲, 张军峰, 马斯鸣, 赵永椿, 张军营. 燃煤烟气非碳基吸附剂脱汞研究进展[J]. 燃料化学学报,2020,48(12):1409−1420. doi: 10.3969/j.issn.0253-2409.2020.12.002

    XIN Feng, WEI Shu-zhou, ZHANG Jun-feng, MA Si-ming, ZHAO Yong-chun, ZHANG Jun-ying. Research progress on the removal of mercury from coal-fired flue gas by using non-carbon-based adsorbents[J]. J Fuel Chem Technol,2020,48(12):1409−1420. doi: 10.3969/j.issn.0253-2409.2020.12.002
    [5]
    SELIN N E. A proposed global metric to aid mercury pollution policy[J]. Science,2018,360(6389):607−609. doi: 10.1126/science.aar8256
    [6]
    ZHOU Z J, LIU X W, LIAO Z Q, SHAO H Z, LV C, HU Y C, XU M H. Manganese doped CeO2-ZrO2 catalyst for elemental mercury oxidation at low temperature[J]. Fuel Process Technol,2016,152:285−293. doi: 10.1016/j.fuproc.2016.06.016
    [7]
    STOLLE R, KOESER H, GUTBERLET H. Oxidation and reduction of mercury by SCR DeNOx catalysts under flue gas conditions in coal fired power plants[J]. Appl Catal B: Environ,2014,144:486−497. doi: 10.1016/j.apcatb.2013.07.040
    [8]
    GHAREBAGHI M, HUGHES K J, PORTER R T J, POURKASHANIAN M, WILLIAMS A. Mercury speciation in air-coal and oxy-coal combustion: a modelling approach[J]. Proc Combust Inst,2011,33(2):1779−1786. doi: 10.1016/j.proci.2010.07.068
    [9]
    ZHOU Z J, LIU X W, ZHAO B, CHEN Z G, SHAO H Z, WANG L L, XU M H. Effects of existing energy saving and air pollution control devices on mercury removal in coal-fired power plants[J]. Fuel Process Technol,2015,131:99−108. doi: 10.1016/j.fuproc.2014.11.014
    [10]
    GAO Y, LI Z. A DFT study of the Hg0 oxidation mechanism on the V2O5-TiO2 (001) surface[J]. Mol Catal,2017,433:372−382. doi: 10.1016/j.mcat.2017.02.026
    [11]
    王永兴, 黄亚继, 董璐, 袁琦, 丁守一, 程好强, 王圣, 段钰锋. Co掺杂铁基氧化物吸附剂燃煤烟气脱汞实验研究.[J]. 燃料化学学报,2020,48(7):785−794. doi: 10.3969/j.issn.0253-2409.2020.07.003

    WANG Yong-xing, HUANG Ya-ji, DONG Lu, YUAN Qi, DING Shou-yi, CHENG Hao-qiang, WANG Sheng, DUAN Yu-feng. Experimental study on mercury removal of coal-fired flue gas over Co-doped iron-based oxide sorbent[J]. J Fuel Chem Technol,2020,48(7):785−794. doi: 10.3969/j.issn.0253-2409.2020.07.003
    [12]
    YANG R, MEI C L, WU X S, YU X F, SHI Z Z. Mn-Cu binary metal oxides with molecular-scale homogeneity for Hg0 removal from coal-fired flue gas[J]. Ind Eng Chem Res,2019,58(41):19292−19301. doi: 10.1021/acs.iecr.9b04005
    [13]
    ZHOU Z J, LIU X W, ZHAO B, SHAO H Z, XU Y S, XU M G. Elemental mercury oxidation over manganese-based perovskite-type catalyst at low temperature[J]. Chem Eng J,2016,288:701−710. doi: 10.1016/j.cej.2015.12.057
    [14]
    陈力, 刘盛余, 吕维阳, 杨柯, 李燕. 锰负载对磁性铁氧化物吸附 Hg0 的影响[J]. 环境工程,2019,37(9):131−137.

    CHEN Li, LIU Sheng-yu, LV Wei-yang, YANG Ke, LI Yan. Effect of manganese loading on zero valent mercury adsorption on magnetic iron oxides[J]. Environ Eng,2019,37(9):131−137.
    [15]
    WANG C, ZHANG X F, MEI J, HONG Q Q, YANG S J. Recovering gaseous Hg0 using sulfureted phosphotungstic acid modified γ-Fe2O3 from power plants burning Hg-rich coal for centralized control[J]. J Hazard Mater,2021,407:124381.
    [16]
    邹思捷. 改性钛磁赤铁矿控制燃煤烟气零价汞排放的研究[D]. 南京: 南京理工大学, 2018.

    ZOU Si-jie. Removal of elemental mercury from the flue gas by H2S-modified iron-titanium oxide compounds[D]. Nanjing: Nanjing University of Science and Technology, 2018.
    [17]
    GALBREATH K C, ZYGARLICKE C J, TIBBETTS J E, SCHULZ R L, DUNHAM G E. Effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on mercury transformations in a 7-kW coal combustion system[J]. Fuel Process Technol,2005,86(4):429−448. doi: 10.1016/j.fuproc.2004.03.003
    [18]
    YANG S J, GUO Y F, YAN N Q, QU Z, XIE J K, YANG C, JIA J P. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures[J]. J Hazard Mater,2011,186(1):508−515. doi: 10.1016/j.jhazmat.2010.11.034
    [19]
    YANG S J, YAN N Q, GUO Y F, WU D Q, HE H P, QU Z, LI J F, ZHOU Q, JIA J P. Gaseous elemental mercury capture from flue gas using magnetic nanosized (Fe3−xMnx)1−δO4[J]. Environ Sci Technol,2011,45(4):1540−1546.
    [20]
    LIU T, XUE L C, GUO X, HUANG Y, ZHENG C G. DFT and experimental study on the mechanism of elemental mercury capture in the presence of HCl on α-Fe2O3(001)[J]. Environ Sci Technol,2016,50(9):4863−4868. doi: 10.1021/acs.est.5b06340
    [21]
    LIU Z, LIU D Y, ZHAO B T, FENG L, NI M G, JIN J. Mercury removal based on adsorption and oxidation by fly ash: A review[J]. Energy Fuels,2020,34(10):11840−11866. doi: 10.1021/acs.energyfuels.0c02209
    [22]
    LIU T, MAN C Y, GUO X, ZHENG C G. Experimental study on the mechanism of mercury removal with Fe2O3 in the presence of halogens: role of HCl and HBr[J]. Fuel,2016,173:209−216. doi: 10.1016/j.fuel.2016.01.054
    [23]
    陈佳敏, 周长松, 杨宏旻, 吴昊. Mo/Fe3O4(111) 表面对燃煤烟气汞吸附的密度泛函研究[J]. 燃料化学学报,2020,48(5):525−532. doi: 10.3969/j.issn.0253-2409.2020.05.002

    CHEN Jia-min, ZHOU Chang-song, YANG Hong-min, WU Hao. A DFT study on the adsorption of various mercury species in the coal combustion flue gases on the Mo-doped Fe3O4(111) surface[J]. J Fuel Chem Technol,2020,48(5):525−532. doi: 10.3969/j.issn.0253-2409.2020.05.002
    [24]
    WANG Z, LIU J, YANG Y, YANG Y J, SHEN F H, YU Y N, YAN X C. Elucidating the mechanism of Hg0 oxidation by chlorine species over Co3O4 catalyst at molecular level[J]. Appl Surf Sci,2020,513:145885.
    [25]
    ZHANG B K, LIU J, SHEN F H. Heterogeneous mercury oxidation by HCl over CeO2 catalyst: Density functional theory study[J]. J Phys Chem C,2015,119(27):15047−15055. doi: 10.1021/acs.jpcc.5b00645
    [26]
    JΦRGENSEN J E, MOSEGAARD L, THOMSEN L E, JENSEN T R, HANSON J C. Formation of γ-Fe2O3 nanoparticles and vacancy ordering: An in situ X-ray powder diffraction study[J]. J Solid State Chem,2007,180(1):180−185. doi: 10.1016/j.jssc.2006.09.033
    [27]
    BAETZOLD R C, YANG H. Computational study on surface structure and crystal morphology of γ-Fe2O3:  Toward deterministic synthesis of nanocrystals[J]. J Phys Chem B,2003,107(51):14357−14364. doi: 10.1021/jp035785k
    [28]
    REN D D, GUI K T. Study of the adsorption of NH3 and NOx on the nano-γFe2O3 (001) surface with density functional theory[J]. Appl Surf Sci,2019,487:171−179. doi: 10.1016/j.apsusc.2019.04.250
    [29]
    SEGALL M D, LINDAN P J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J Phys-Condens Matter,2002,14(11):2717. doi: 10.1088/0953-8984/14/11/301
    [30]
    HUBER K P, HERZBERG G. Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules[M]. New York: Springer Science & Business Media, 2013.
    [31]
    KAUPP M, VON SCHNERING H G. Origin of the unique stability of condensed-phase Hg22+. An ab initio investigation of MI and MII pecies (M =Zn, Cd, Hg)[J]. Inorg Chem,1994,33(18):4179−4185. doi: 10.1021/ic00096a049
    [32]
    GUO P, GUO X, ZHENG C G. Roles of γ-Fe2O3 in fly ash for mercury removal: Results of density functional theory study[J]. Appl Surf Sci,2010,256(23):6991−6996. doi: 10.1016/j.apsusc.2010.05.013
    [33]
    厉志鹏, 牛胜利, 赵改菊, 韩奎华, 李英杰, 路春美, 程屾. Sr掺杂对 CaO (100) 表面吸附甲醇影响的分子模拟[J]. 燃料化学学报,2020,48(2):172−178. doi: 10.3969/j.issn.0253-2409.2020.02.006

    LI Zhi-peng, NIU Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHENG Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. J Fuel Chem Technol,2020,48(2):172−178. doi: 10.3969/j.issn.0253-2409.2020.02.006
    [34]
    PRESTO A A, GRANITE E J. Survey of catalysts for oxidation of mercury in flue gas[J]. Environ Sci Technol,2006,40(18):5601−5609. doi: 10.1021/es060504i
    [35]
    HE W, RAN J, NIU J Y, NIU J T, YANG G P, ZHANG P. Mechanism insights into elemental mercury oxidation on RuO2 (110) surface: A density functional study[J]. Appl Surf Sci,2019,466:920−927. doi: 10.1016/j.apsusc.2018.09.218
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (572) PDF downloads(41) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return