Volume 50 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
MAI Yi-lang, XIE Xiang-sheng, WANG Zhi-da, YAN Chang-feng, LIU Guang-hua. Effect of heat treatment temperature on the Pt3Co binary metal catalysts for oxygen reduced reaction and DFT calculations[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 114-121. doi: 10.1016/S1872-5813(21)60099-3
Citation: MAI Yi-lang, XIE Xiang-sheng, WANG Zhi-da, YAN Chang-feng, LIU Guang-hua. Effect of heat treatment temperature on the Pt3Co binary metal catalysts for oxygen reduced reaction and DFT calculations[J]. Journal of Fuel Chemistry and Technology, 2022, 50(1): 114-121. doi: 10.1016/S1872-5813(21)60099-3

Effect of heat treatment temperature on the Pt3Co binary metal catalysts for oxygen reduced reaction and DFT calculations

doi: 10.1016/S1872-5813(21)60099-3
Funds:  The project was supported by the Research and Development of Key Technologies for Hydrogen Production from Water Electrolysis with Highly Adaptable Renewable Energy (KFJ-STS-QY2D-2021-02-003)
  • Received Date: 2021-03-19
  • Rev Recd Date: 2021-04-29
  • Available Online: 2021-05-18
  • Publish Date: 2022-01-25
  • Synthesis of low-cost, high-activity and high-stability Pt-based catalysts is of great importance to the large commercialization of proton exchange membrane fuel cell (PEMFC). Doping non-precious metals such as cobalt (Co) with Pt is attractive due to the reduced depletion of Pt and, more importantly, the enhanced activity on the oxygen reduction reaction (ORR) compared with pure Pt. In this work, carbon-supported platinum-cobalt nanoparticles (NPs) were prepared by the impregnation reduction method for the ORR catalyst. By changing the heat treatment temperature, the structure, the crystal phase and the size of the Pt3Co nanoparticles could be controlled. TEM and XRD characterizations show that larger size NPs with higher alloying degree are obtained at higher temperature. The electrochemical results demonstrate that the Pt3Co NPs at 800 ℃ have the highest mass activity (0.41 A/mgPt) and the best stability among all the samples due to their lower particle size and higher alloying degree. Further Density functional theory (DFT) calculation shows that the surface of the Pt3Co structure with high alloying degree can reduce the rate-determining step barrier and improve the ORR activity.
  • loading
  • [1]
    SHAO M, CHANG Q, DODELET, CHENITZ R. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem Rev,2016,116(6):3594−3657. doi: 10.1021/acs.chemrev.5b00462
    [2]
    JIA Q, CALDWELL K, STRICKLAND K, ZIEGELBAUER J M, LIU Z, YU Z, RAMAKER D E, MUKERJEE S. Improved oxygen reduction activity and durability of dealloyed PtCox catalysts for proton exchange membrane fuel cells: Strain, ligand, and particle size effects[J]. ACS Catal,2015,5(1):176−186. doi: 10.1021/cs501537n
    [3]
    YU Y, YANG W, SUN X, ZHU W, LI X, SELLMYER D J, SUN S. Monodisperse MPt (M = Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts[J]. Nano Lett,2014,14(5):2778−2782. doi: 10.1021/nl500776e
    [4]
    ANTOLINI E, SALGADO JRC, GIZ M J, GONZALEZ E R. Effects of geometric and electronic factors on ORR activity of carbon supported Pt-Co electrocatalysts in PEM fuel cells[J]. Int J Hydrogen Energy,2005,30(11):1213−1220. doi: 10.1016/j.ijhydene.2005.05.001
    [5]
    LI Q, WU L, WU G, SU D, LV H, ZHANG S, ZHU W, CASIMMR A, ZHU H, GARCIA A M, SUN S. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid[J]. Nano Lett,2015,15(4):2468−2473. doi: 10.1021/acs.nanolett.5b00320
    [6]
    LI J, SHARMA S, LIU X, PAN Y, SPENDELOW J S, CHI M, JIA Y, ZHANG P, CULLEN D A, XI Z, LIN H, YIN Z, SHEN B, MUZZIO M, YU C, KIM Y S, PETERSON A A, MORE K L, SUN S. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis[J]. Joule,2019,3(1):124−135. doi: 10.1016/j.joule.2018.09.016
    [7]
    WANG D, XIN H L, HOVDEN R, WANG H, YU Y, MULLER D A, DISALVO F J, ABRUNA H D. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nat Mater,2013,12(1):81−87. doi: 10.1038/nmat3458
    [8]
    ZHANG B, FU G, LI Y, LIANG L, GRUNDISH N S, TANG Y, GOODENOUGH J B, CUI Z. General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size[J]. Angew Chem Int Ed Eng,2020,59(20):7857−7863. doi: 10.1002/anie.201916260
    [9]
    吕银荣, 孙维艳, 王峰. 用于直接甲醇燃料电池的高活性PtCo-CNT@TiO2复合纳米阳极催化剂[J]. 燃料化学学报,2019,47(12):1522−1528. doi: 10.3969/j.issn.0253-2409.2019.12.012

    LÜ Ying-rong, SUN Wei-yan, WANG Feng. Highly active PtCo-CNT@TiO2 composite nanoanode catalyst for direct methanol fuel cells[J]. J Fuel Chem Technol,2019,47(12):1522−1528. doi: 10.3969/j.issn.0253-2409.2019.12.012
    [10]
    赵海东, 卢珍, 刘锐, 李作鹏, 郭永. 铂银合金的制备及其对甲醇电氧化反应的催化性能[J]. 燃料化学学报,2020,48(8):1015−1024. doi: 10.3969/j.issn.0253-2409.2020.08.014

    ZHAO Hai-dong, LU Zhen, LIU Rui, Li Zuo-peng, Guo yong. Preparation of platinum-silver alloy nanoparticles and their catalytic performance in methanol electro-oxidation[J]. J Fuel Chem Technol,2020,48(8):1015−1024. doi: 10.3969/j.issn.0253-2409.2020.08.014
    [11]
    杨改秀, 王可欣, 张泽珍, 甄峰, 孙永明. 电沉积制备MnO2催化剂及其在微生物燃料电池中的应用[J]. 燃料化学学报,2020,48(7):889−896. doi: 10.3969/j.issn.0253-2409.2020.07.015

    YANG Gai-xiu, WANG Ke-xin, ZHANG Ze-zhen, ZHEN Feng, SUN Yong-ming. Preparation of MnO2 catalyst by electrochemical deposition and its application in the microbial fuel cells[J]. J Fuel Chem Technol,2020,48(7):889−896. doi: 10.3969/j.issn.0253-2409.2020.07.015
    [12]
    GUO S, ZHANG S, SUN S. Tuning nanoparticle catalysis for the oxygen reduction reaction[J]. Angew Chem Int Ed Eng,2013,52(33):8526−8544. doi: 10.1002/anie.201207186
    [13]
    CHOI D S, ROBERTSON A W, WARNER J H, KIM S Q, KIM H. Low-temperature chemical vapor deposition synthesis of Pt-Co alloyed nanoparticles with enhanced oxygen reduction reaction catalysis[J]. Adv Mater Weinheim,2016,28(33):7115−7122. doi: 10.1002/adma.201600469
    [14]
    JUNG W S, POPOV B N. New method to synthesize highly active and durable chemically ordered fct-PtCo cathode catalyst for PEMFCs[J]. ACS Appl Mater Interfaces,2017,9(28):23679−23686. doi: 10.1021/acsami.7b04750
    [15]
    WANG C, MARKOVIC N M, STAMENKOVIC V R. Advanced platinum alloy electrocatalysts for the oxygen reduction reaction[J]. ACS Catal,2012,2(5):891−898. doi: 10.1021/cs3000792
    [16]
    XIA B Y, WU H B, LI N, YAN Y, LOU X W, WANG X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties[J]. Angew Chem,2015,127(12):3868−3872. doi: 10.1002/ange.201411544
    [17]
    KNUPP S L, LI W, PASCHOS O, MURRAY T M, SNYDER J, HALDAR P. The effect of experimental parameters on the synthesis of carbon nanotube/nanofiber supported platinum by polyol processing techniques[J]. Carbon,2008,46(10):1276−1284. doi: 10.1016/j.carbon.2008.05.007
    [18]
    LOUKRAKPAM R, LUO J, HE T, CHEN Y, XU Z, NJOKI P N, WANJALA B N, FANG B, MOTT D, YIN J, KLAR J, POWELL B, ZHONG C. Nanoengineered PtCo and PtNi catalysts for oxygen reduction reaction: An assessment of the structural and electrocatalytic properties[J]. J Phys Chem C,2011,115(5):1682−1694. doi: 10.1021/jp109630n
    [19]
    SCHMIES H, HORNBERGER E, ANKE B, JURZINSKY T, NONG H N, DIONIGI F, KUHL S, DRNEC J, LERCH M, CREMERS C, STRASSER P. Impact of carbon support functionalization on the electrochemical stability of Pt fuel cell catalysts[J]. Chem Mater,2018,30(20):7287−7295. doi: 10.1021/acs.chemmater.8b03612
    [20]
    CAI Y, GAO P, WANG F, ZHU H. Carbon supported chemically ordered nanoparicles with stable Pt shell and their superior catalysis toward the oxygen reduction reaction[J]. Electrochimica Acta,2017,245:924−933. doi: 10.1016/j.electacta.2017.04.173
    [21]
    WEI C, RAO R R, PENG J, HUANG B, STEPHENS I E L, RISCH M, XU Z J, HORN Y S. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells[J]. Adv Mater Weinheim,2019,31(31):e1806296. doi: 10.1002/adma.201806296
    [22]
    BAHN S R, JACOBSEN K W. An object-oriented scripting interface to a legacy electronic structure code[J]. Comput Sci Eng,2002,4(3):56−66. doi: 10.1109/5992.998641
    [23]
    HAMMER B, HANSEN L B, NøRSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Phys Rev B,1999,59(11):7413−7421. doi: 10.1103/PhysRevB.59.7413
    [24]
    SETHURAMAN V A, VAIRAVAPANDIAN D, LAFOURESSE M C, MAARK T A, KARAN N, SUN S, BERTOCCI U, PETERSON A A, STAFFORD G R, GUDURU P R. Role of elastic strain on electrocatalysis of oxygen reduction reaction on Pt[J]. J Phys Chem C,2015,119(33):19042−19052. doi: 10.1021/acs.jpcc.5b06096
    [25]
    FROST K, KAMINSKI D, KIRWAN G, LASCARIS E, SHANKS R. Crystallinity and structure of starch using wide angle X-ray scattering[J]. Carbohydrate Polymers,2009,78(3):543−548. doi: 10.1016/j.carbpol.2009.05.018
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3521) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return