Volume 49 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
LI Ying-tao, NIU Peng-yu, WANG Qiang, JIA Li-tao, LIN Ming-gui, LI De-bao. Performance of Zn-Al co-doped La2O3 catalysts in the oxidative coupling of methane[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1458-1467. doi: 10.1016/S1872-5813(21)60100-7
Citation: LI Ying-tao, NIU Peng-yu, WANG Qiang, JIA Li-tao, LIN Ming-gui, LI De-bao. Performance of Zn-Al co-doped La2O3 catalysts in the oxidative coupling of methane[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1458-1467. doi: 10.1016/S1872-5813(21)60100-7

Performance of Zn-Al co-doped La2O3 catalysts in the oxidative coupling of methane

doi: 10.1016/S1872-5813(21)60100-7
Funds:  The project was supported by Shanxi Science and Technology Department Bidding Project (20191101012) and the Autonomous Research Project of SKLCC (2020BWZ003)
  • Received Date: 2021-04-12
  • Rev Recd Date: 2021-04-21
  • Available Online: 2021-05-28
  • Publish Date: 2021-10-30
  • Zn-doped and Zn-Al co-doped La2O3 catalysts were prepared by citric acid sol-gel method and characterized by a series of in situ technologies, to investigate the structure-activity relationship of La2O3-based catalysts in the oxidative coupling of methane (OCM). The in situ XRD results reveal a thermal expansion of the La2O3 crystal along the c-axis at high temperature. The H2-TPR results show two types of oxygen species on the La2O3-based catalysts, viz., the strong-binding oxygen species and weak-binding oxygen species; in addition, the XPS results indicate that the strong-binding oxygen species is probably attributed to anion radical O. The doping with Zn can significantly increase the number of oxygen vacancies in the Zn-doped La2O3 catalysts, which can promote the activation of oxygen and generate more strong-binding oxygen species; as a result, the Zn-doped La2O3 catalyst shows better performance in OCM in comparison with the unmodified La2O3 catalyst. Moreover, the co-doping with Al can promote the dispersion of Zn in La2O3 and further raise the number of strong-binding oxygen species in the Zn-Al co-doped La2O3 catalysts, which is beneficial to enhance the selectivity to C2+ hydrocarbons in the OCM reaction
  • loading
  • [1]
    张宝幸. 甲烷直接转化研究进展[J]. 石油化工,2017,46(4):503−509. doi: 10.3969/j.issn.1000-8144.2017.04.019

    ZHANG Bao-xing. Progresses in the research for direct conversion of methane[J]. Petrochem Technol,2017,46(4):503−509. doi: 10.3969/j.issn.1000-8144.2017.04.019
    [2]
    申文杰. 低温甲烷氧化偶联制乙烯[J]. 物理化学学报,2017,33(12):2321−2322. doi: 10.3866/PKU.WHXB201706231

    SHEN Wen-jie. Low-temperature oxidative coupling of methane to ethylene[J]. Acta Phys-Chim Sin,2017,33(12):2321−2322. doi: 10.3866/PKU.WHXB201706231
    [3]
    OLIVOS-SUAREZ A I, SZECSENYI A, HENSEN E J M, RUIZ-MARTINEZ J, PIDKO E A, GASCON J. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: Challenges and opportunities[J]. ACS Catal,2016,6(5):2965−2981. doi: 10.1021/acscatal.6b00428
    [4]
    LUO L F, YOU R, LIU Y M, YANG J Z, ZHU Y N, WEN W, PAN Y, QI F, HUANG W X. Gas-phase reaction network of Li/MgO-catalyzed oxidative coupling of methane and oxidative dehydrogenation of ethane[J]. ACS Catal,2019,9(3):2514−2520. doi: 10.1021/acscatal.8b04728
    [5]
    CHUA Y T, MOHAMED A R, BHATIA S. Oxidative coupling of methane for the production of ethylene over sodium-tungsten-manganese-supported-silica catalyst (Na-W-Mn/SiO2)[J]. Appl Cataly A: Gen,2008,343(1):142−148.
    [6]
    VOSKRESENSKAYA E N, ROGULEVA V G, ANSHITS A G. Oxidant activation over structural defects of oxide catalysts in oxidative methane coupling[J]. Catal Rev-Sci Eng,1995,37(1):101−143. doi: 10.1080/01614949508007092
    [7]
    李鹏, 张明森, 武洁花. 甲烷氧化偶联制乙烯机理和动力学研究进展[J]. 石油化工,2018,47(9):1005−1012. doi: 10.3969/j.issn.1000-8144.2018.09.017

    LI Peng, ZHANG Ming-sen, WU Jie-hua. Progresses in the mechanism and kinetics of methane oxidation coupling[J]. Petrochem Technol,2018,47(9):1005−1012. doi: 10.3969/j.issn.1000-8144.2018.09.017
    [8]
    PALMER M S, NEUROCK M, OLKEN M M. Periodic density functional theory study of methane activation over La2O3: Activity of O2−, O, O22−, oxygen point defect, and Sr2+-doped surface sites[J]. J Am Chem Soc,2002,124(28):8452−8461. doi: 10.1021/ja0121235
    [9]
    GAMBO Y, JALIL A A, TRIWAHYONO S, ABDULRASHEED A A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review[J]. J Ind Eng Chem,2018,59:218−229. doi: 10.1016/j.jiec.2017.10.027
    [10]
    WANG S B, LI S G, DIXON D A. Mechanism of selective and complete oxidation in La2O3-catalyzed oxidative coupling of methane[J]. Catal Sci Technol,2020,10(8):2602−2614. doi: 10.1039/D0CY00141D
    [11]
    BORCHERT H, BAERNS M. The effect of oxygen-anion conductivity of metal-oxide doped lanthanum oxide catalysts on hydrocarbon selectivity in the oxidative coupling of methane[J]. J Catal,1997,168(2):315−320. doi: 10.1006/jcat.1997.1662
    [12]
    KWAPIEN K, PAIER J, SAUER J, GESKE M, ZAVYALOVA U, HORN R, SCHWACH P, TRUNSCHKE A, SCHLOEGL R. Sites for methane activation on lithium-doped magnesium oxide surfaces[J]. Angew Chem Int Ed,2014,53(33):8774−8778. doi: 10.1002/anie.201310632
    [13]
    VIGGIANO A A, MORRIS R A, MILLER T M, FRIEDMAN J F, MENEDEZBARRETO M, PAULSON J F, MICHELS H H, HOBBS R H. Reaction on the O+CH4 potential energy surface: Dependence on translational and internal energy and on isotopic composition, 93-1313 K[J]. J Chem Phys,1997,106(20):8455−8463. doi: 10.1063/1.473904
    [14]
    KATHREIN H, FREUND F, NAGY J. O--ions and their relation to traces of H2O and CO2 in magnesium-oxide an electron-paramagnetic-res study[J]. J Phys Chem Solids,1984,45(11-1):1155−1163.
    [15]
    SONG J J, SUN Y H, BA R B, HUANG S S, ZHAO Y H, ZHANG J, SUN Y H, ZHU Y. Monodisperse Sr-La2O3 hybrid nanofibers for oxidative coupling of methane to synthesize C2 hydrocarbons[J]. Nanoscale,2015,7(6):2260−2264. doi: 10.1039/C4NR06660J
    [16]
    丛林娜, 赵永慧, 李圣刚, 孙予罕. 锶掺杂对氧化镧催化甲烷氧化偶联反应的影响[J]. 催化学报,2017,38(5):899−907. doi: 10.1016/S1872-2067(17)62823-7

    CONG Lin-na, ZHAO Yong-hui, LI Sheng-gang, SUN Yu-han. Sr-doping effects on La2O3 catalyst for oxidative coupling of methane[J]. Chin J Catal,2017,38(5):899−907. doi: 10.1016/S1872-2067(17)62823-7
    [17]
    WANG Z Q, WANG D, GONG X Q. Strategies to improve the activity while maintaining the selectivity of oxidative coupling of methane at La2O3: A density functional theory study[J]. ACS Catal,2020,10(1):586−594. doi: 10.1021/acscatal.9b03066
    [18]
    XU M T, LUNSFORD J H. Effect of temperature on methyl radical generation over Sr/La2O3 catalysts[J]. Catal Lett,1991,11(3/6):295−300. doi: 10.1007/BF00764320
    [19]
    FERREIRA V J, TAVARES P, FIGUEIREDO J L, FARIA J L. Ce-doped La2O3 based catalyst for the oxidative coupling of methane[J]. Catal Commun,2013,42:50−53. doi: 10.1016/j.catcom.2013.07.035
    [20]
    WU X Y, FANG Z, PAN H, ZHENG Y F, JIANG D H, NI J, LI X N. Active oxygen species on Mg-La mixed oxides: the effect of Mg and La oxide interactions[J]. Catal Sci Technol,2017,7(4):797−801. doi: 10.1039/C6CY02286C
    [21]
    SEKINE Y, TANAKA K, MATSUKATA M, KIKUCHI E. Oxidative coupling of methane on Fe-doped La2O3 catalyst[J]. Energy Fuels,2009,23(1/2):613−616.
    [22]
    CHOUDHARY V R, MULLA S A R, UPHADE B S. Oxidative coupling of methane over SrO deposited on different commercial supports precoated with La2O3[J]. Ind Eng Chem Res,1998,37(6):2142−2147. doi: 10.1021/ie9706018
    [23]
    SOLLIER B M, GOMEZ L E, BOIX A V, MIRO E E. Oxidative coupling of methane on Sr/La2O3 catalysts: Improving the catalytic performance using cordierite monoliths and ceramic foams as structured substrates[J]. Appl Catal A: Gen,2017,532:65−76. doi: 10.1016/j.apcata.2016.12.018
    [24]
    MATRAS D, JACQUES S D M, POULSTON S, GROSJEAN N, BOSCH C E, ROLLINS B, Wright J. Operando and postreaction diffraction imaging of the La-Sr/CaO catalyst in the oxidative coupling of methane reaction[J]. J Phys Chem C,2019,123(3):1751−1760. doi: 10.1021/acs.jpcc.8b09018
    [25]
    MATRAS D, JACQUES S D M, GODINI H R, KHADIVI M, DRNEC J, POULAIN A, CERNIK R J, BEALE A M. Real-time operando diffraction imaging of La-Sr/Cao during the oxidative coupling of methane[J]. J Phys Chem C,2018,122(4):2221−2230. doi: 10.1021/acs.jpcc.7b11573
    [26]
    LI B, METIU H. DFT Studies of oxygen vacancies on undoped and doped La2O3 surfaces[J]. J Phys Chem C,2010,114(28):12234−12244. doi: 10.1021/jp103604b
    [27]
    LI B, METIU H. Dissociation of methane on La2O3 surfaces doped with Cu, Mg, or Zn[J]. J Phys Chem C,2011,115(37):18239−18246. doi: 10.1021/jp2049603
    [28]
    LEE G, KIM I, YANG I, HA J M, NA H B, JUNG J C. Effects of the preparation method on the crystallinity and catalytic activity of LaAlO3 perovskites for oxidative coupling of methane[J]. Appl Surf Sci,2018,429:55−61. doi: 10.1016/j.apsusc.2017.08.092
    [29]
    DAWSON J A, TANAKAA I. Local structure and energetics of Pr- and La-doped SrTiO3 grain boundaries and the influence on core-shell structure formation[J]. J Phys Chem C,2014,118(44):25765−25778. doi: 10.1021/jp508444k
    [30]
    JIANG T, SONG J J, HUO M F, YANG N T, LIU J W, ZHANG J, SUN Y H, ZHU Y. La2O3 catalysts with diverse spatial dimensionality for oxidative coupling of methane to produce ethylene and ethane[J]. RSC Adv,2016,6(41):34872−34876. doi: 10.1039/C6RA01805J
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (247) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return