Volume 49 Issue 7
Jul.  2021
Turn off MathJax
Article Contents
JI Hong-hai, LING Feng-xiang, WANG Peng, SUI Bao-kuan, WANG Shao-jun, YUAN Sheng-hua. Preparation of rod-like γ-alumina/volcanic rock porous material and preliminary study on the adsorption property of Congo red[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1049-1056. doi: 10.1016/S1872-5813(21)60107-X
Citation: JI Hong-hai, LING Feng-xiang, WANG Peng, SUI Bao-kuan, WANG Shao-jun, YUAN Sheng-hua. Preparation of rod-like γ-alumina/volcanic rock porous material and preliminary study on the adsorption property of Congo red[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 1049-1056. doi: 10.1016/S1872-5813(21)60107-X

Preparation of rod-like γ-alumina/volcanic rock porous material and preliminary study on the adsorption property of Congo red

doi: 10.1016/S1872-5813(21)60107-X
Funds:  The project was supported by China Petroleum & Chemical Corporation, SINOPEC (118011-2)
  • Received Date: 2021-03-01
  • Rev Recd Date: 2021-05-08
  • Available Online: 2021-06-07
  • Publish Date: 2021-07-15
  • The porous materials of rod-like γ-alumina interlaced in pores of volcanic rock were prepared by in-situ growth using volcanic rock as matrix material, aluminum nitrate and ammonium bicarbonate as raw materials. The structure and properties of the materials were characterized by XRD, SEM, N2 adsorption-desorption and TG-DSC technology. The adsorption performance of Congo red was also studied. It was found that the aluminum nitrate solution filled the pores of volcanic matrix materials by diffusion and adsorption, and amorphous alumina was formed after calcination. During hydrothermal treatment and calcination, the formed alumina was transformed into ammonium aluminum carbonate hydroxide and γ-alumina. The optimal reaction conditions for the preparation of rod-like γ-alumina/volcanic rock porous materials were as following: the concentration of ammonium bicarbonate solution was 0.8 mol/L, the reaction temperature was 140 ℃, and the reaction time was 4 h. The rod-like γ-alumina stacked in the channels of volcanic rock with a diameter of 50−150 nm and length of 3−10 μm. The specific surface area and pore volume of the porous material was 0.1 mL/g and 47 m2/g, respectively. When the concentration of Congo red solution was 500 mg/L and the dosage of porous material was 2 g/L, the removal rate was 96% with the adsorption amount of 243 mg/g.
  • loading
  • [1]
    JING X, TETSUO Y, JAE-MIN O. Synthesis of a mesoporous Mg-Al-mixed metal oxide with P123 template for effective removal of Congo red via aggregation-driven adsorption[J]. J Solid State Chem,2021,293:121758. doi: 10.1016/j.jssc.2020.121758
    [2]
    FATEMEH R, HOSSEIN A, MORTEZA A, GHODRATOLLAH A. Introducing Ag2O-Ag2CO3/rGO nanoadsorbents for enhancingphotocatalytic degradation rate and efficiency of Congo red through surface adsorption[J]. Colloid Surface A,2021,613:126068. doi: 10.1016/j.colsurfa.2020.126068
    [3]
    ANUJ K P, MONOJ K M. Development of CTAB modified ternary phase α-Fe2O3-Mn2O3-Mn3O4 nanocomposite as innovative super-adsorbent for Congo red dye adsorption[J]. J Environ Chem Eng,2021,9:104827. doi: 10.1016/j.jece.2020.104827
    [4]
    CAO X Q, WANG X, CHEN M, XIAO F, HUANG Y M, LYU X J. Synthesis of nanoscale zeolitic imidazolate framework-8 (ZIF-8) using reverse micro-emulsion for Congo red adsorption[J]. Sep Purif Technol,2021,260:118062. doi: 10.1016/j.seppur.2020.118062
    [5]
    CHEN X, LEI X F, ZHENG H, JIANG X, ZHANG B L, ZHANG H P, LU C, ZHANG Q Y. Facile one-step synthesis of magnetic zeolitic Imidazolate framework forultra fast removal of Congo red from water[J]. Microporous Mesoporous Mater,2021,311:110721.
    [6]
    PEYMAN K, AHMAD R, HADI S. Efficient removal of congo red dye using Fe3O4/NiO nanocomposite: Synthesis and characterization[J]. Environ Technol Innovation,2021,23:101559. doi: 10.1016/j.eti.2021.101559
    [7]
    GAURAV S, TAHANI S A, KUMAR P S, SANGEETA B, AMIT K, SHWETA S, NAUSHAD M, ZEID A A, FLORIAN J S. Utilization of Ag2O-Al2O3-ZrO2 decorated onto rGO as adsorbent for the removal of Congo red from aqueous solution[J]. Environ Res,2021,197:111179. doi: 10.1016/j.envres.2021.111179
    [8]
    柴正泽, 叶俊伟, 田其哲, 史磊, 宁桂玲. 气溶胶辅助法合成球形氧化镁及其吸附性能研究[J]. 无机盐工业,2020,52(1):39−43. doi: 10.11962/1006-4990.2019-0159

    CHAI Zheng-ze, YE Jun-wei, TIAN Qi-zhe, SHI Lei, NING Gui-ling. Aerosol-assisted synthesis of spherical magnesium oxide and its adsorption properties[J]. Inorg Chem Ind,2020,52(1):39−43. doi: 10.11962/1006-4990.2019-0159
    [9]
    郭小蕊, 权婷婷, 谢天翼, 孟范成. 分级结构γ-AlOOH的无模板水热制备及其吸附性能[J]. 硅酸盐通报,2017,36(4):1175−1179.

    GUO Xiao-rui, QUAN Ting-ting, XIE Tian-yi, MENG Fan-cheng. Synthesis of Hierarchical γ-AlOOH via template-free hydrothermal method and its adsorption performance[J]. Bull Chin Ceram Soc,2017,36(4):1175−1179.
    [10]
    任海深, 田中青, 孟范成. 纳米γ-AlOOH分级结构溶剂热制备及吸附性能研究[J]. 硅酸盐通报,2015,34(1):199−203.

    REN Hai-shen, TIAN Zhong-qing, MENG Fan-cheng. Solvothermal synthesis of hierarchical structures nano γ-AlOOH and its adsorption performance[J]. Bull Chin Ceram Soc,2015,34(1):199−203.
    [11]
    ZHANG H M, RUAN Y, FENG Y, SU M, DIAO Z H, CHEN D Y, HOU L, LEE P, SHIH K, KONG L J. Solvent-free hydrothermal synthesis of gamma-aluminum oxide nanoparticles with selective adsorption of Congo red[J]. J Colloid Interf Sci,2019,536:180−188. doi: 10.1016/j.jcis.2018.10.054
    [12]
    LIU X M, NIU C G, ZHEN X P, WANG J D, SU X T. Novel approach for synthesis of boehmite nanostructures and their conversion to aluminum oxide nanostructures for remove Congo red[J]. J Colloid Interf Sci,2015,452:116−125. doi: 10.1016/j.jcis.2015.04.037
    [13]
    ZHAO S Z, WEN Y F, DU C C, TANG T, KANG D J. Introduction of vacancy capture mechanism into defective alumina microspheres for enhanced adsorption of organic dyes[J]. Chem Eng J,2020,402:126180. doi: 10.1016/j.cej.2020.126180
    [14]
    CAI W Q, HU Y Z, CHEN J, ZHANG G X, XIA T. Synthesis of nanorods-like mesoporous γ-Al2O3 with enhanced affinity towards Congo red removal: effects of anions and structure-directing agents[J]. Cryst Eng Comm,2012,14:972−977. doi: 10.1039/C1CE05975K
    [15]
    ZHU P H, TIAN P, LIU Y L, PANG H C, GONG W T, YE J W, NING G L. A template-free method for the synthesis of porous alumina with superhigh specific surface area and large pore volume[J]. Microporous Mesoporous Mater,2020,292:109752. doi: 10.1016/j.micromeso.2019.109752
    [16]
    彭炳先, 周爱红. 浮石负载壳聚糖吸附去除水中丙溴磷[J]. 应用化学,2017,34(4):464−470. doi: 10.11944/j.issn.1000-0518.2017.04.160263

    PENG Bing-xian, ZHOU Ai-hong. Adsorptive removal of profenofos from aqueous solution by chitosan/pumice[J]. Chin J Appl Chem,2017,34(4):464−470. doi: 10.11944/j.issn.1000-0518.2017.04.160263
    [17]
    王春荣, 胡建龙, 何绪文, 于承豪, 刘晋羽. 改性火山岩处理高铁锰矿井水机理分析[J]. 煤炭科学技术,2013,41(1):121−124.

    WANG Chun-rong, HU Jian-long, HE Xu-wen, YU Cheng-hao, LIU Jin-yu. Mechanism analysis on high iron and manganese content mine water treatment with modified volcanic rocks[J]. Coal Sci Technol,2013,41(1):121−124.
    [18]
    王春荣, 于承豪, 孙衍卿, 任欣, 程方琳. 改性火山岩颗粒吸附处理含Cu2+和Zn2+重金属废水影响因素研究[J]. 水处理技术,2013,39(1):73−76. doi: 10.3969/j.issn.1000-3770.2013.01.016

    WANG Chun-rong, YU Cheng-hao, SUN Yan-qing, REN Xin, CHENG Fang-lin. Study on factors of modified lava particles absorption for copper and zinc ions from heavy metal wastewater[J]. Technol Water Treat,2013,39(1):73−76. doi: 10.3969/j.issn.1000-3770.2013.01.016
    [19]
    周光红, 向学敏, 周集体. 火山岩对废水中磷的吸附性能及机理研究[J]. 辽宁化工,2011,40(8):805−808. doi: 10.3969/j.issn.1004-0935.2011.08.011

    ZHOU Guang-hong, XIANG Xue-min, ZHOU Ji-ti. Performance and mechanism of phosphorus adsorption on the lava from wastewater[J]. Liaoning Chem Ind,2011,40(8):805−808. doi: 10.3969/j.issn.1004-0935.2011.08.011
    [20]
    EUNMI I, HO J S, KIM D I, DA I K, DONG C H, GEON D M. Bimodally-porous alumina with tunable mesopore and macropore forefficient organic adsorbents[J]. Chem Eng J,2021,416:129147. doi: 10.1016/j.cej.2021.129147
    [21]
    孟范成, 张晓磊, 任海深, 卢思颖, 黄伟九, 洪学鹍. 核桃状3D分级结构γ-AlOOH无模板水热合成及对刚果红吸附性能研究[J]. 人工晶体学报,2014,43(5):1274−1279. doi: 10.3969/j.issn.1000-985X.2014.05.043

    MENG Fan-cheng, ZHANG Xiao-lei, REN Hai-shen, LU Si-wei, HUANG Wei-jiu, HONG Xue-kun. Template-free hydrothermal synthesis of walnut-like 3D hierarchical structures γ-AlOOH and its adsorption performance for Congo red[J]. J Synthetic Cryst,2014,43(5):1274−1279. doi: 10.3969/j.issn.1000-985X.2014.05.043
    [22]
    PEYMAN K, AHMAD R, HADI S. Efficient removal of congo red dye using Fe3O4/NiO nanocomposite: Synthesis and characterization[J]. Environ Technol Inno, 2021, 23: 101559.
    [23]
    CHEN X, LEI X F, ZHENG H, JIANG X, ZHANG B L, ZHANG H P, LU C, ZHANG Q Y. Facile one-step synthesis of magnetic zeolitic imidazolate framework for ultra fast removal of Congo red from water[J]. Microporous Mesoporous Mater,2021,311:110712. doi: 10.1016/j.micromeso.2020.110712
    [24]
    CAI W Q, YU J G, JARONIEC M. Template-free synthesis of hierarchical spindle-like gamma-Al2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water[J]. J Mater Chem,2010,20(22):4587−4594. doi: 10.1039/b924366f
    [25]
    YU C C, DONG X P, CUO L M, LI J T, QIN F, ZHANG L X, SHI J L, YAN D S. Template-free Preparation of mesoporous Fe2O3 and its application as absorbents[J]. J Phys Chem C,2008,112(35):13378−13382. doi: 10.1021/jp8044466
    [26]
    WALTER J, WEBER J, ASCE A M, MORRIS J C. Kinetics of adsorption on carbon from solution[J]. J Sanit Eng Div Am Soc Civ Eng,1963,89:31−60.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (386) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return